
第19讲 | Java并发包提供了哪些并发工具类？
2018-06-19 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:32 大小 4.83M

通过前面的学习，我们一起回顾了线程、锁等各种并发编程的基本元素，也逐步涉及了

Java 并发包中的部分内容，相信经过前面的热身，我们能够更快地理解 Java 并发包。

今天我要问你的问题是，Java 并发包提供了哪些并发工具类？

典型回答

我们通常所说的并发包也就是 java.util.concurrent 及其子包，集中了 Java 并发的各种基

础工具类，具体主要包括几个方面：



提供了比 synchronized 更加高级的各种同步结构，包括 CountDownLatch、

CyclicBarrier、Semaphore 等，可以实现更加丰富的多线程操作，比如利用



 下载APP 

考点分析

这个题目主要考察你对并发包了解程度，以及是否有实际使用经验。我们进行多线程编程，

无非是达到几个目的：

所以，这道题目只能算作简单的开始，往往面试官还会进一步考察如何利用并发包实现某个

特定的用例，分析实现的优缺点等。

如果你在这方面的基础比较薄弱，我的建议是：

掌握这些通常就够用了，毕竟并发包提供了方方面面的工具，其实很少有机会能在应用中全

面使用过，扎实地掌握核心功能就非常不错了。真正特别深入的经验，还是得靠在实际场景

中踩坑来获得。

知识扩展

Semaphore 作为资源控制器，限制同时进行工作的线程数量。

各种线程安全的容器，比如最常见的 ConcurrentHashMap、有序的

ConcunrrentSkipListMap，或者通过类似快照机制，实现线程安全的动态数组

CopyOnWriteArrayList 等。

各种并发队列实现，如各种 BlockedQueue 实现，比较典型的 ArrayBlockingQueue、

SynchorousQueue 或针对特定场景的 PriorityBlockingQueue 等。

强大的 Executor 框架，可以创建各种不同类型的线程池，调度任务运行等，绝大部分情

况下，不再需要自己从头实现线程池和任务调度器。

利用多线程提高程序的扩展能力，以达到业务对吞吐量的要求。

协调线程间调度、交互，以完成业务逻辑。

线程间传递数据和状态，这同样是实现业务逻辑的需要。

从总体上，把握住几个主要组成部分（前面回答中已经简要介绍）。

理解具体设计、实现和能力。

再深入掌握一些比较典型工具类的适用场景、用法甚至是原理，并熟练写出典型的代码用

例。

首先，我们来看看并发包提供的丰富同步结构。前面几讲已经分析过各种不同的显式锁，今

天我将专注于

Java 提供了经典信号量（Semaphore）的实现，它通过控制一定数量的允许（permit）的

方式，来达到限制通用资源访问的目的。你可以想象一下这个场景，在车站、机场等出租车

时，当很多空出租车就位时，为防止过度拥挤，调度员指挥排队等待坐车的队伍一次进来 5

个人上车，等这 5 个人坐车出发，再放进去下一批，这和 Semaphore 的工作原理有些类

似。

你可以试试使用 Semaphore 来模拟实现这个调度过程：

CountDownLatch，允许一个或多个线程等待某些操作完成。

CyclicBarrier，一种辅助性的同步结构，允许多个线程等待到达某个屏障。

Semaphore，Java 版本的信号量实现。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import java.util.concurrent.Semaphore;
public class UsualSemaphoreSample {
 public static void main(String[] args) throws InterruptedException {
 System.out.println("Action...GO!");
 Semaphore semaphore = new Semaphore(5);
 for (int i = 0; i < 10; i++) {
 Thread t = new Thread(new SemaphoreWorker(semaphore));
 t.start();
 }
 }
}
class SemaphoreWorker implements Runnable {
 private String name;
 private Semaphore semaphore;
 public SemaphoreWorker(Semaphore semaphore) {
 this.semaphore = semaphore;
 }
 @Override
 public void run() {
 try {
 log("is waiting for a permit!");
 semaphore.acquire();
 log("acquired a permit!");
 log("executed!");
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {

复制代码

https://en.wikipedia.org/wiki/Semaphore_(programming)
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Semaphore.html

这段代码是比较典型的 Semaphore 示例，其逻辑是，线程试图获得工作允许，得到许可

则进行任务，然后释放许可，这时等待许可的其他线程，就可获得许可进入工作状态，直到

全部处理结束。编译运行，我们就能看到 Semaphore 的允许机制对工作线程的限制。

但是，从具体节奏来看，其实并不符合我们前面场景的需求，因为本例中 Semaphore 的

用法实际是保证，一直有 5 个人可以试图乘车，如果有 1 个人出发了，立即就有排队的人

获得许可，而这并不完全符合我们前面的要求。

那么，我再修改一下，演示个非典型的 Semaphore 用法。

28

29

30

31

32

33

34

35

36

37

38

 log("released a permit!");
 semaphore.release();
 }
 }
 private void log(String msg){
 if (name == null) {
 name = Thread.currentThread().getName();
 }
 System.out.println(name + " " + msg);
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

import java.util.concurrent.Semaphore;
public class AbnormalSemaphoreSample {
 public static void main(String[] args) throws InterruptedException {
 Semaphore semaphore = new Semaphore(0);
 for (int i = 0; i < 10; i++) {
 Thread t = new Thread(new MyWorker(semaphore));
 t.start();
 }
 System.out.println("Action...GO!");
 semaphore.release(5);
 System.out.println("Wait for permits off");
 while (semaphore.availablePermits()!=0) {
 Thread.sleep(100L);
 }
 System.out.println("Action...GO again!");
 semaphore.release(5);
 }
}
class MyWorker implements Runnable {
 private Semaphore semaphore;
 public MyWorker(Semaphore semaphore) {

复制代码

注意，上面的代码，更侧重的是演示 Semaphore 的功能以及局限性，其实有很多线程编

程中的反实践，比如使用了 sleep 来协调任务执行，而且使用轮询调用 availalePermits 来

检测信号量获取情况，这都是很低效并且脆弱的，通常只是用在测试或者诊断场景。

总的来说，我们可以看出 Semaphore 就是个计数器，其基本逻辑基于

acquire/release，并没有太复杂的同步逻辑。

如果 Semaphore 的数值被初始化为 1，那么一个线程就可以通过 acquire 进入互斥状

态，本质上和互斥锁是非常相似的。但是区别也非常明显，比如互斥锁是有持有者的，而对

于 Semaphore 这种计数器结构，虽然有类似功能，但其实不存在真正意义的持有者，除

非我们进行扩展包装。

下面，来看看 CountDownLatch 和 CyclicBarrier，它们的行为有一定的相似度，经常会

被考察二者有什么区别，我来简单总结一下。

22

23

24

25

26

27

28

29

30

31

32

33

34

 this.semaphore = semaphore;
 }
 @Override
 public void run() {
 try {
 semaphore.acquire();
 System.out.println("Executed!");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

CountDownLatch 是不可以重置的，所以无法重用；而 CyclicBarrier 则没有这种限

制，可以重用。

CountDownLatch 的基本操作组合是 countDown/await。调用 await 的线程阻塞等待

countDown 足够的次数，不管你是在一个线程还是多个线程里 countDown，只要次数

足够即可。所以就像 Brain Goetz 说过的，CountDownLatch 操作的是事件。

CyclicBarrier 的基本操作组合，则就是 await，当所有的伙伴（parties）都调用了

await，才会继续进行任务，并自动进行重置。注意，正常情况下，CyclicBarrier 的重置

都是自动发生的，如果我们调用 reset 方法，但还有线程在等待，就会导致等待线程被打

如果用 CountDownLatch 去实现上面的排队场景，该怎么做呢？假设有 10 个人排队，我

们将其分成 5 个人一批，通过 CountDownLatch 来协调批次，你可以试试下面的示例代

码。

扰，抛出 BrokenBarrierException 异常。CyclicBarrier 侧重点是线程，而不是调用事

件，它的典型应用场景是用来等待并发线程结束。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import java.util.concurrent.CountDownLatch;
public class LatchSample {
 public static void main(String[] args) throws InterruptedException {
 CountDownLatch latch = new CountDownLatch(6);
 for (int i = 0; i < 5; i++) {
 Thread t = new Thread(new FirstBatchWorker(latch));
 t.start();
 }
 for (int i = 0; i < 5; i++) {
 Thread t = new Thread(new SecondBatchWorker(latch));
 t.start();
 }
 // 注意这里也是演示目的的逻辑，并不是推荐的协调方式

 while (latch.getCount() != 1){
 Thread.sleep(100L);
 }
 System.out.println("Wait for first batch finish");
 latch.countDown();
 }
}
class FirstBatchWorker implements Runnable {
 private CountDownLatch latch;
 public FirstBatchWorker(CountDownLatch latch) {
 this.latch = latch;
 }
 @Override
 public void run() {
 System.out.println("First batch executed!");
 latch.countDown();
 }
}
class SecondBatchWorker implements Runnable {
 private CountDownLatch latch;
 public SecondBatchWorker(CountDownLatch latch) {
 this.latch = latch;
 }
 @Override
 public void run() {
 try {
 latch.await();

复制代码

CountDownLatch 的调度方式相对简单，后一批次的线程进行 await，等待前一批

countDown 足够多次。这个例子也从侧面体现出了它的局限性，虽然它也能够支持 10 个

人排队的情况，但是因为不能重用，如果要支持更多人排队，就不能依赖一个

CountDownLatch 进行了。其编译运行输出如下：

在实际应用中的条件依赖，往往没有这么别扭，CountDownLatch 用于线程间等待操作结

束是非常简单普遍的用法。通过 countDown/await 组合进行通信是很高效的，通常不建

议使用例子里那个循环等待方式。

如果用 CyclicBarrier 来表达这个场景呢？我们知道 CyclicBarrier 其实反映的是线程并行运

行时的协调，在下面的示例里，从逻辑上，5 个工作线程其实更像是代表了 5 个可以就绪

的空车，而不再是 5 个乘客，对比前面 CountDownLatch 的例子更有助于我们区别它们

的抽象模型，请看下面的示例代码：

41

42

43

44

45

46

47

 System.out.println("Second batch executed!");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

1

2

3

4

5

6

7

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierSample {
 public static void main(String[] args) throws InterruptedException {
 CyclicBarrier barrier = new CyclicBarrier(5, new Runnable() {
 @Override
 public void run() {

复制代码

为了让输出更能表达运行时序，我使用了 CyclicBarrier 特有的 barrierAction，当屏障被

触发时，Java 会自动调度该动作。因为 CyclicBarrier 会自动进行重置，所以这个逻辑其实

可以非常自然的支持更多排队人数。其编译输出如下：

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 System.out.println("Action...GO again!");
 }
 });
 for (int i = 0; i < 5; i++) {
 Thread t = new Thread(new CyclicWorker(barrier));
 t.start();
 }
 }
 static class CyclicWorker implements Runnable {
 private CyclicBarrier barrier;
 public CyclicWorker(CyclicBarrier barrier) {
 this.barrier = barrier;
 }
 @Override
 public void run() {
 try {
 for (int i=0; i<3 ; i++){
 System.out.println("Executed!");
 barrier.await();
 }
 } catch (BrokenBarrierException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Java 并发类库还提供了Phaser，功能与 CountDownLatch 很接近，但是它允许线程动态

地注册到 Phaser 上面，而 CountDownLatch 显然是不能动态设置的。Phaser 的设计初

衷是，实现多个线程类似步骤、阶段场景的协调，线程注册等待屏障条件触发，进而协调彼

此间行动，具体请参考这个例子。

接下来，我来梳理下并发包里提供的线程安全 Map、List 和 Set。首先，请参考下面的类

图。

你可以看到，总体上种类和结构还是比较简单的，如果我们的应用侧重于 Map 放入或者获

取的速度，而不在乎顺序，大多推荐使用 ConcurrentHashMap，反之则使用

ConcurrentSkipListMap；如果我们需要对大量数据进行非常频繁地修改，

ConcurrentSkipListMap 也可能表现出优势。

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Phaser.html
http://www.baeldung.com/java-phaser

我在前面的专栏，谈到了普通无顺序场景选择 HashMap，有顺序场景则可以选择类似

TreeMap 等，但是为什么并发容器里面没有 ConcurrentTreeMap 呢？

这是因为 TreeMap 要实现高效的线程安全是非常困难的，它的实现基于复杂的红黑树。为

保证访问效率，当我们插入或删除节点时，会移动节点进行平衡操作，这导致在并发场景中

难以进行合理粒度的同步。而 SkipList 结构则要相对简单很多，通过层次结构提高访问速

度，虽然不够紧凑，空间使用有一定提高（O(nlogn)），但是在增删元素时线程安全的开

销要好很多。为了方便你理解 SkipList 的内部结构，我画了一个示意图。

关于两个 CopyOnWrite 容器，其实 CopyOnWriteArraySet 是通过包装了

CopyOnWriteArrayList 来实现的，所以在学习时，我们可以专注于理解一种。

首先，CopyOnWrite 到底是什么意思呢？它的原理是，任何修改操作，如 add、set、

remove，都会拷贝原数组，修改后替换原来的数组，通过这种防御性的方式，实现另类的

线程安全。请看下面的代码片段，我进行注释的地方，可以清晰地理解其逻辑。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public boolean add(E e) {
 synchronized (lock) {
 Object[] elements = getArray();
 int len = elements.length;
 // 拷贝

 Object[] newElements = Arrays.copyOf(elements, len + 1);
 newElements[len] = e;
 // 替换

 setArray(newElements);
 return true;
 }
}
final void setArray(Object[] a) {
 array = a;

复制代码

所以这种数据结构，相对比较适合读多写少的操作，不然修改的开销还是非常明显的。

今天我对 Java 并发包进行了总结，并且结合实例分析了各种同步结构和部分线程安全容

器，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？留给你的思考题是，你使用过类似

CountDownLatch 的同步结构解决实际问题吗？谈谈你的使用场景和心得。

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

15 }

上一篇 第18讲 | 什么情况下Java程序会产生死锁？如何定位、修复？

下一篇 第20讲 | 并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别？

天秤座的选...
2018-06-20

 26

做android的，一个页面有A,B,C三个网络请求，其中请求C需要请求A和请求B的返回数据
作为参数，用过CountdownLatch解决。

展开

Daydayup
2018-06-22

 16

CountDownLatch最近还真用上了。我的需求是每个对象一个线程，分别在每个线程里计
算各自的数据，最终等到所有线程计算完毕，我还需要将每个有共通的对象进行合并，所
以用它很合适。

作者回复: 合适的场景

013
2018-11-29

 13

1）CountDownLatch和CyclicBarrier都能够实现线程之间的等待，只不过它们侧重点不
同：
CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后，它才执行；
而CyclicBarrier一般用于一组线程互相等待至某个状态，然后这一组线程再同时执行；
另外，CountDownLatch是不能够重用的，而CyclicBarrier是可以重用的。 …
展开

作者回复: 不错

8

精选留言 (37)  写留言

Jerry银银2018-06-20 
8

对于Java 并发包提供了哪些并发工具类，我是这么理解的：
1. 执行任务，需要对应的执行框架（Executors）；
2. 多个任务被同时执行时，需要协调，这就需要Lock、闭锁、栅栏、信号量、阻塞队列；
3. Java程序中充满了对象，在并发场景中当然避免不了遇到同种类型的N个对象，而对象
需要被存储，这需要高效的线程安全的容器类

展开

夏天🔆
2018-06-20

 7

以前使用coutdownlatch进行并发异常的模拟，来修改bug，具体是在发生异常的错误堆
栈上进行await，在某些条件处或触发点进行coutdown，来尽可能模拟触发异常时的场
景，很多可以必现，修改之后没有问题，才算解决一个并发异常

展开

TWO STRIN...
2018-06-20

 5

ArrayBlockingQueue使用了两个condition来分别控制put和take的阻塞与唤醒，但是我
在想好像只用一个condition也可以，因为put和take只会有一个是处于阻塞等待状态。所
以设计成两个condition 的原因是什么呢？只是为了提高可读性么？

展开

扫地僧的功...
2018-06-19

 5

17讲的问题，留言有点晚，老师可能不会看，想得到老师的回复：调用notify()/notifyAll()
方法后线程是处于阻塞状态吧，因为线程还没获取到锁。

展开

作者回复: 是说调用notify的那个线程的状态吗？

不是的，这里有很多方面：

阻塞一般发生在进入同步块儿时；

notify并不会让出当前的monitor；

可以用wait释放锁，但是进入waiting状态。

不建议靠记忆去学习，类似问题我建议思考一下：能不能用一段程序验证，需不需要利用什么工

具；别忘了从Javadoc得到初步信息

授人以渔比提供答案更重要，最好不要你怀疑我这里的每个结论，自己写代码去玩玩

石头狮子
2018-06-20

 4

列举实践中两个应用并发工具的场景:
1. 请求熔断器，使用 Semaphore 熔断某些请求线程，待系统恢复以后再逐步释放信号
量。
2. Worker 搜索停止标志。使用 countdownlatch 标记 Worker 找到的结果个数，达到结
果后其他线程不再继续执行。

展开

洛措
2018-06-20

 4

在写爬虫时，使用过 Semaphore ，来控制最多爬同一个域名下的 url 数量。

三个石头
2018-06-19

 4

你用的Semaphore第二个例子，构造函数中为啥为0,信号量不是非负整数吗？

Phoenix
2018-11-11

 3

经过老师的讲解，我对CountDownLatch的使用场景是这样理解的：
1：A线程的执行，依赖与B线程或C线程等等其他多个线程任务的执行结果来触发A线程任
务执行事件

作者回复: 不错

xuery
2018-10-03

 2

最近有用到countDownLatch，一个批量更新接口，采用多线程提高处理速度，全部处理

完将结果封装返回给app端

展开

作者回复: 是个应用频率高的同步工具

feifei
2018-08-03

 2

我的使用经验，在进行高并发的测试时，我会使用countdownlatch,将所有的工作线程在
开始时等待，然后在统一的开始，这样就可以避免创建线程所需的时间开销，更好的模拟
高并发

扫地僧的功...
2018-06-20

 2

谢谢老师的回复，还是notify()/notifyAll()问题，我想说的是被唤醒的线程再重新获取锁之
前应该是阻塞状态吧。

展开

Leiy
2018-06-19

 2

对于CopyOnWriteArrayList，适用于读多写少的场景，这个比较好理解，但是在实际使用
时候，读写比占多少时候，可以使用？心里还是没数，这个怎么去衡量？

QQ怪
2019-04-01

 1

一般用CountDownLatch来提高接口访问速度，不知道这样符不符合规范😂😂😂

clz134152...
2018-08-06

 1

我的应用场景是异步发送一定数量的http消息，主线程等待 所有发送完毕，获取所有的发
送成功数

xinxin💛
2018-07-07

 1

老师为什么我用ConcurrentHashMap执行remove操作的时候cpu总是跳得很高，
hashmap就还好没那么夸张。。现在为了线程安全还是用ConcurrentHashMap，但执行
remove操作的线程一多经常就卡死了。

作者回复: 你是什么版本jdk？

jacy
2018-06-25

 1

感觉CountDownLatch有点像c++中的条件锁，想问一下老师，可否给点从c++转java的
建议。

作者回复: 这个...经验谈不上，我也没这经验；或者你可以对比二者的区别，加深理解；

为什么转？希望达到什么目标？

zjh
2018-06-21

 1

感觉再分布式的情况下，单体应用中需要多个线程并行的情况可能会被分散在多个应用里
面，可能很少会用到CountDownLatch和cyclicbarrier，semaphore倒是比较适合用在分
布式的场景下，用来做一些限流。

展开

作者回复: 不错

