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在上一讲中，我分析了 Java 并发包中的部分内容，今天我来介绍一下线程安全队列。Java

标准库提供了非常多的线程安全队列，很容易混淆。

今天我要问你的问题是，并发包中的 ConcurrentLinkedQueue 和 LinkedBlockingQueue

有什么区别？

典型回答

有时候我们把并发包下面的所有容器都习惯叫作并发容器，但是严格来讲，类似

ConcurrentLinkedQueue 这种“Concurrent*”容器，才是真正代表并发。
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关于问题中它们的区别：

不知道你有没有注意到，java.util.concurrent 包提供的容器（Queue、List、Set）、

Map，从命名上可以大概区分为 Concurrent*、CopyOnWrite和 Blocking等三类，同样

是线程安全容器，可以简单认为：

考点分析

今天的问题是又是一个引子，考察你是否了解并发包内部不同容器实现的设计目的和实现区

别。

队列是非常重要的数据结构，我们日常开发中很多线程间数据传递都要依赖于它，

Executor 框架提供的各种线程池，同样无法离开队列。面试官可以从不同角度考察，比

如：

Concurrent 类型基于 lock-free，在常见的多线程访问场景，一般可以提供较高吞吐

量。

而 LinkedBlockingQueue 内部则是基于锁，并提供了 BlockingQueue 的等待性方法。

Concurrent 类型没有类似 CopyOnWrite 之类容器相对较重的修改开销。

但是，凡事都是有代价的，Concurrent 往往提供了较低的遍历一致性。你可以这样理解

所谓的弱一致性，例如，当利用迭代器遍历时，如果容器发生修改，迭代器仍然可以继续

进行遍历。

与弱一致性对应的，就是我介绍过的同步容器常见的行为“fail-fast”，也就是检测到容

器在遍历过程中发生了修改，则抛出 ConcurrentModificationException，不再继续遍

历。

弱一致性的另外一个体现是，size 等操作准确性是有限的，未必是 100% 准确。

与此同时，读取的性能具有一定的不确定性。

哪些队列是有界的，哪些是无界的？（很多同学反馈了这个问题）

针对特定场景需求，如何选择合适的队列实现？

从源码的角度，常见的线程安全队列是如何实现的，并进行了哪些改进以提高性能表现？



为了能更好地理解这一讲，需要你掌握一些基本的队列本身和数据结构方面知识，如果这方

面知识比较薄弱，《数据结构与算法分析》是一本比较全面的参考书，专栏还是尽量专注于

Java 领域的特性。

知识扩展

线程安全队列一览

我在专栏第 8 讲中介绍过，常见的集合中如 LinkedList 是个 Deque，只不过不是线程安全

的。下面这张图是 Java 并发类库提供的各种各样的线程安全队列实现，注意，图中并未将

非线程安全部分包含进来。

我们可以从不同的角度进行分类，从基本的数据结构的角度分析，有两个特别的Deque实

现，ConcurrentLinkedDeque 和 LinkedBlockingDeque。Deque 的侧重点是支持对队

列头尾都进行插入和删除，所以提供了特定的方法，如:

从上面这些角度，能够理解 ConcurrentLinkedDeque 和 LinkedBlockingQueue 的主要

功能区别，也就足够日常开发的需要了。但是如果我们深入一些，通常会更加关注下面这些

方面。

尾部插入时需要的addLast(e)、offerLast(e)。

尾部删除所需要的removeLast()、pollLast()。

http://time.geekbang.org/column/article/7810
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#addLast-E-
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#offerLast-E-
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#removeLast--
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#pollLast--


从行为特征来看，绝大部分 Queue 都是实现了 BlockingQueue 接口。在常规队列操作基

础上，Blocking 意味着其提供了特定的等待性操作，获取时（take）等待元素进队，或者

插入时（put）等待队列出现空位。

另一个 BlockingQueue 经常被考察的点，就是是否有界（Bounded、Unbounded），这

一点也往往会影响我们在应用开发中的选择，我这里简单总结一下。
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 /**
 * 获取并移除队列头结点，如果必要，其会等待直到队列出现元素

…
 */
E take() throws InterruptedException;
 
/**
 * 插入元素，如果队列已满，则等待直到队列出现空闲空间

   …
 */
void put(E e) throws InterruptedException;  

复制代码

ArrayBlockingQueue 是最典型的的有界队列，其内部以 final 的数组保存数据，数组的

大小就决定了队列的边界，所以我们在创建 ArrayBlockingQueue 时，都要指定容量，

如

1 public ArrayBlockingQueue(int capacity, boolean fair)

复制代码

LinkedBlockingQueue，容易被误解为无边界，但其实其行为和内部代码都是基于有界

的逻辑实现的，只不过如果我们没有在创建队列时就指定容量，那么其容量限制就自动被

设置为 Integer.MAX_VALUE，成为了无界队列。

SynchronousQueue，这是一个非常奇葩的队列实现，每个删除操作都要等待插入操

作，反之每个插入操作也都要等待删除动作。那么这个队列的容量是多少呢？是 1 吗？

其实不是的，其内部容量是 0。

PriorityBlockingQueue 是无边界的优先队列，虽然严格意义上来讲，其大小总归是要

受系统资源影响。



如果我们分析不同队列的底层实现，BlockingQueue 基本都是基于锁实现，一起来看看典

型的 LinkedBlockingQueue。

我在介绍 ReentrantLock 的条件变量用法的时候分析过 ArrayBlockingQueue，不知道你

有没有注意到，其条件变量与 LinkedBlockingQueue 版本的实现是有区别的。

notEmpty、notFull 都是同一个再入锁的条件变量，而 LinkedBlockingQueue 则改进了

锁操作的粒度，头、尾操作使用不同的锁，所以在通用场景下，它的吞吐量相对要更好一

些。

下面的 take 方法与 ArrayBlockingQueue 中的实现，也是有不同的，由于其内部结构是

链表，需要自己维护元素数量值，请参考下面的代码。

DelayedQueue 和 LinkedTransferQueue 同样是无边界的队列。对于无边界的队列，

有一个自然的结果，就是 put 操作永远也不会发生其他 BlockingQueue 的那种等待情

况。
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/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
 
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
 
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
 
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();

复制代码
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public E take() throws InterruptedException {
    final E x;
    final int c;
    final AtomicInteger count = this.count;
    final ReentrantLock takeLock = this.takeLock;
    takeLock.lockInterruptibly();
    try {
        while (count.get() == 0) {
            notEmpty.await();
        }

复制代码



类似 ConcurrentLinkedQueue 等，则是基于 CAS 的无锁技术，不需要在每个操作时使用

锁，所以扩展性表现要更加优异。

相对比较另类的 SynchronousQueue，在 Java 6 中，其实现发生了非常大的变化，利用

CAS 替换掉了原本基于锁的逻辑，同步开销比较小。它是

Executors.newCachedThreadPool() 的默认队列。

队列使用场景与典型用例

在实际开发中，我提到过 Queue 被广泛使用在生产者 - 消费者场景，比如利用

BlockingQueue 来实现，由于其提供的等待机制，我们可以少操心很多协调工作，你可以

参考下面样例代码：
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        x = dequeue();
        c = count.getAndDecrement();
        if (c > 1)
            notEmpty.signal();
    } finally {
        takeLock.unlock();
    }
    if (c == capacity)
        signalNotFull();
    return x;
}
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import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
 
public class ConsumerProducer {
    public static final String EXIT_MSG  = "Good bye!";
    public static void main(String[] args) {
// 使用较小的队列，以更好地在输出中展示其影响

        BlockingQueue<String> queue = new ArrayBlockingQueue<>(3);
        Producer producer = new Producer(queue);
        Consumer consumer = new Consumer(queue);
        new Thread(producer).start();
        new Thread(consumer).start();
    }
 
 
    static class Producer implements Runnable {

复制代码
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        private BlockingQueue<String> queue;
        public Producer(BlockingQueue<String> q) {
            this.queue = q;
        }
 
        @Override
        public void run() {
            for (int i = 0; i < 20; i++) {
                try{
                    Thread.sleep(5L);
                    String msg = "Message" + i;
                    System.out.println("Produced new item: " + msg);
                    queue.put(msg);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
 
            try {
                System.out.println("Time to say good bye!");
                queue.put(EXIT_MSG);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
 
    static class Consumer implements Runnable{
        private BlockingQueue<String> queue;
        public Consumer(BlockingQueue<String> q){
            this.queue=q;
        }
 
        @Override
        public void run() {
            try{
                String msg;
                while(!EXIT_MSG.equalsIgnoreCase( (msg = queue.take()))){
                    System.out.println("Consumed item: " + msg);
                    Thread.sleep(10L);
                }
                System.out.println("Got exit message, bye!");
            }catch(InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}



上面是一个典型的生产者 - 消费者样例，如果使用非 Blocking 的队列，那么我们就要自己

去实现轮询、条件判断（如检查 poll 返回值是否 null）等逻辑，如果没有特别的场景要

求，Blocking 实现起来代码更加简单、直观。

前面介绍了各种队列实现，在日常的应用开发中，如何进行选择呢？

以 LinkedBlockingQueue、ArrayBlockingQueue 和 SynchronousQueue 为例，我们一

起来分析一下，根据需求可以从很多方面考量：

今天我分析了 Java 中让人眼花缭乱的各种线程安全队列，试图从几个角度，让每个队列的

特点更加明确，进而希望减少你在日常工作中使用时的困扰。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？ 今天的内容侧重于 Java 自身的角度，面试

官也可能从算法的角度来考察，所以今天留给你的思考题是，指定某种结构，比如栈，用它

实现一个 BlockingQueue，实现思路是怎样的呢？

考虑应用场景中对队列边界的要求。ArrayBlockingQueue 是有明确的容量限制的，而

LinkedBlockingQueue 则取决于我们是否在创建时指定，SynchronousQueue 则干脆

不能缓存任何元素。

从空间利用角度，数组结构的 ArrayBlockingQueue 要比 LinkedBlockingQueue 紧

凑，因为其不需要创建所谓节点，但是其初始分配阶段就需要一段连续的空间，所以初始

内存需求更大。

通用场景中，LinkedBlockingQueue 的吞吐量一般优于 ArrayBlockingQueue，因为它

实现了更加细粒度的锁操作。

ArrayBlockingQueue 实现比较简单，性能更好预测，属于表现稳定的“选手”。

如果我们需要实现的是两个线程之间接力性（handoff）的场景，按照专栏上一讲的例

子，你可能会选择 CountDownLatch，但是SynchronousQueue也是完美符合这种场景

的，而且线程间协调和数据传输统一起来，代码更加规范。

可能令人意外的是，很多时候 SynchronousQueue 的性能表现，往往大大超过其他实

现，尤其是在队列元素较小的场景。

http://time.geekbang.org/column/article/9373
http://www.baeldung.com/java-synchronous-queue


请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第19讲 | Java并发包提供了哪些并发工具类？

下一篇 第21讲 | Java并发类库提供的线程池有哪几种？ 分别有什么特点？

sunlight00...
2018-06-21

 42

这个看着很吃力啊，都没接触过😂

展开

精选留言 (23)  写留言



丘壑
2018-09-13

 9

栈来实现blockqueue，个人感觉比较好的有 
方案一：总共3个栈，其中2个写入栈（A、B），1个消费栈栈C（消费数据），但是有1个
写入栈是空闲的栈（B），随时等待写入，当消费栈(C)中数据为空的时候，消费线程
（await），触发数据转移，原写入栈(A)停止写入，，由空闲栈（B）接受写入的工作，原
写入栈(A)中的数据转移到消费栈（C）中，转移完成后继续（sign）继续消费，2个写入…
展开

石头狮子
2018-06-21

 7

实现课后题过程中把握以下几个维度， 
1，数据操作的锁粒度。 
2，计数，遍历方式。 
3，数据结构空，满时线程的等待方式，有锁或无锁方式。 
4，使用离散还是连续的存储结构。

展开

crazyone
2018-06-22

 5

从上面这些角度，能够理解 ConcurrentLinkedDeque 和 LinkedBlockingQueue 的主要
功能区别。 这段应该是 "ConcurrentLinkedDeque 和 LinkedBlockingDeque 的主要功
能区别"

猕猴桃 �...
2018-06-22
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{ 
    "test":[ 
        [ 
            89, 
            90, …
展开

无呢可称
2018-06-27

 3



@Jerry银银。用两个栈可以实现fifo的队列 
 

南北少卿
2018-12-14

 1

杨老师,你好,最近我debug过ConcurrentLinkedQueue的源码,第一次添加元素的时候,为什
么head指向添加的元素,而tail指向自己,始终搞不明白,经过p.casNext(null, newNode)操作
之后,这中间的变化到底是怎么回事?您能解答下吗?望指点.我的微信号:LEE794112629

展开

吕倩
2018-12-03

 1

老师你好，在读ArrayBlockingQueue源码的时候，发现很多地方都有 final
ReentrantLock lock = this.lock; 这样的语句，处于什么原因会将类变量复制一份到局部
变量，然后再使用呢？

酱了个油
2018-08-05

 1

队列的一个问题是不能持久化、不能做到分布式，有时候考虑到系统可靠性，使用的机会
不多。杨老师可以给一些使用队列的例子吗？

展开

汉彬
2018-07-17

 1

用栈实现BlockingQueue，我的理解是：栈是LIFO，BlockingQueue是FIFO，因此需要
两个栈。take时先把栈A全部入栈到栈B，然后栈B出栈得到目标元素；put时把栈B全部入
栈到栈A，然后栈A再入栈目标元素。相当于倒序一下。 
 
不知道理解对不对，请老师指出。

展开

爱新觉罗老...
2018-07-03

 1

杨老师，“与弱一致性对应的，就是我介绍过的同步容器常见的行为“fast-fail”，也就是



检测到容器在遍历过程中发生了修改，则抛出 ConcurrentModificationException，不再
继续遍历。”  
这一段落里，快速失败的英文在doc上是“fail-fast”，在ArrayList源码中文档可以搜到。 
还有，同步容器不应该是“fail-safe”吗？

展开

作者回复: 谢谢指出，我查查是不是我记反了

Jerry银银
2018-06-22

 1

用栈来实现BlockingQueue，换句话是说，用先进后出的数据结构来实现先进先出的数据
结构，怎么感觉听起来不那么对劲呢？请指点

展开

灰飞灰猪不...
2018-06-21

 1

老师 线程池中如果线程已经运行结束则删除该线程。如何判断线程已经运行结束了呢？源
码中我看见按照线程的状态，我不清楚这些状态值哪来的。java代码有判断线程状态的方
法吗？谢谢老师

作者回复: 所谓结束是指terminated？正常的线程池移除工作线程，要么线程意外退出，比如任务

抛异常，要么线程闲置，又规定了闲置时间；线程池中线程是把额外封装的，本来下章写了，内

容篇幅超标移到后面了，慢慢来；有，建议学会看文档，自己找答案

石头狮子
2018-06-21

 1

实现课后题过程中把握以下几个维度， 
1，数据操作的锁粒度。 
2，计数，遍历方式。 
3，数据结构空，满时线程的等待方式，有锁或无锁方式。 
4，使用离散还是连续的存储结构。

展开



Lighters
2019-04-27



希望能够增加一些具体的业务使用场景，否则只是单纯的分析，太抽象了 

Zach_
2019-04-27



大致思路：（后续需要手动实现） 
一把ReentrantLock 
两个Condition notEmpty notFull 
 
栈为空 notEmpty.await() --- 出栈阻塞 …
展开

杭州
2018-11-10



杨老师你好，遇到个问题，200个并发线程池阻塞读linkBlockingQueue队列，偶尔会出现
阻塞时会线程cpu很好。jstack看了很多lock。会不会出现线程离开线程池，去干别的任
务，干了一半又回到线程池中干活。两边出现死锁？

展开

作者回复: 没有太明白问题，线程离开线程池是什么情况？“很好”是很“高”吗？很多“锁”但

并没有死锁，我的理解对吗？配合top，看看占cpu的线程栈具体是什么情况吧，

杭州
2018-11-10



杨老师你好，我碰到个问题： 200个线程池 阻塞读take（）linkblockingqueue队列，偶
尔会发现线程池中的阻塞线程cpu突高。jstack看了有很多的lock。怀疑是池程离开线程池
去干别的活，干了一半又回到线程池中，出现死锁表现cpu高。不知道是什么这个原因，不
知道怎么解决？

展开

小飞哥  ...
2018-10-11



向我们这些写业务代码的应该如何使用并发类和框架？



展开

null
2018-09-11



SynchronousQueue，删除操作依赖插入操作，而插入操作又依赖删除操作，死锁了么？ 
SynchronousQueue 一般应用在啥场景呢？

展开


