
第20讲 | 并发包中的ConcurrentLinkedQueue和
LinkedBlockingQueue有什么区别？
2018-06-21 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 08:36 大小 3.94M

在上一讲中，我分析了 Java 并发包中的部分内容，今天我来介绍一下线程安全队列。Java

标准库提供了非常多的线程安全队列，很容易混淆。

今天我要问你的问题是，并发包中的 ConcurrentLinkedQueue 和 LinkedBlockingQueue

有什么区别？

典型回答

有时候我们把并发包下面的所有容器都习惯叫作并发容器，但是严格来讲，类似

ConcurrentLinkedQueue 这种“Concurrent*”容器，才是真正代表并发。





 下载APP 

关于问题中它们的区别：

不知道你有没有注意到，java.util.concurrent 包提供的容器（Queue、List、Set）、

Map，从命名上可以大概区分为 Concurrent*、CopyOnWrite和 Blocking等三类，同样

是线程安全容器，可以简单认为：

考点分析

今天的问题是又是一个引子，考察你是否了解并发包内部不同容器实现的设计目的和实现区

别。

队列是非常重要的数据结构，我们日常开发中很多线程间数据传递都要依赖于它，

Executor 框架提供的各种线程池，同样无法离开队列。面试官可以从不同角度考察，比

如：

Concurrent 类型基于 lock-free，在常见的多线程访问场景，一般可以提供较高吞吐

量。

而 LinkedBlockingQueue 内部则是基于锁，并提供了 BlockingQueue 的等待性方法。

Concurrent 类型没有类似 CopyOnWrite 之类容器相对较重的修改开销。

但是，凡事都是有代价的，Concurrent 往往提供了较低的遍历一致性。你可以这样理解

所谓的弱一致性，例如，当利用迭代器遍历时，如果容器发生修改，迭代器仍然可以继续

进行遍历。

与弱一致性对应的，就是我介绍过的同步容器常见的行为“fail-fast”，也就是检测到容

器在遍历过程中发生了修改，则抛出 ConcurrentModificationException，不再继续遍

历。

弱一致性的另外一个体现是，size 等操作准确性是有限的，未必是 100% 准确。

与此同时，读取的性能具有一定的不确定性。

哪些队列是有界的，哪些是无界的？（很多同学反馈了这个问题）

针对特定场景需求，如何选择合适的队列实现？

从源码的角度，常见的线程安全队列是如何实现的，并进行了哪些改进以提高性能表现？

为了能更好地理解这一讲，需要你掌握一些基本的队列本身和数据结构方面知识，如果这方

面知识比较薄弱，《数据结构与算法分析》是一本比较全面的参考书，专栏还是尽量专注于

Java 领域的特性。

知识扩展

线程安全队列一览

我在专栏第 8 讲中介绍过，常见的集合中如 LinkedList 是个 Deque，只不过不是线程安全

的。下面这张图是 Java 并发类库提供的各种各样的线程安全队列实现，注意，图中并未将

非线程安全部分包含进来。

我们可以从不同的角度进行分类，从基本的数据结构的角度分析，有两个特别的Deque实

现，ConcurrentLinkedDeque 和 LinkedBlockingDeque。Deque 的侧重点是支持对队

列头尾都进行插入和删除，所以提供了特定的方法，如:

从上面这些角度，能够理解 ConcurrentLinkedDeque 和 LinkedBlockingQueue 的主要

功能区别，也就足够日常开发的需要了。但是如果我们深入一些，通常会更加关注下面这些

方面。

尾部插入时需要的addLast(e)、offerLast(e)。

尾部删除所需要的removeLast()、pollLast()。

http://time.geekbang.org/column/article/7810
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#addLast-E-
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#offerLast-E-
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#removeLast--
https://docs.oracle.com/javase/9/docs/api/java/util/Deque.html#pollLast--

从行为特征来看，绝大部分 Queue 都是实现了 BlockingQueue 接口。在常规队列操作基

础上，Blocking 意味着其提供了特定的等待性操作，获取时（take）等待元素进队，或者

插入时（put）等待队列出现空位。

另一个 BlockingQueue 经常被考察的点，就是是否有界（Bounded、Unbounded），这

一点也往往会影响我们在应用开发中的选择，我这里简单总结一下。

1

2

3

4

5

6

7

8

9

10

11

 /**
 * 获取并移除队列头结点，如果必要，其会等待直到队列出现元素

…
 */
E take() throws InterruptedException;

/**
 * 插入元素，如果队列已满，则等待直到队列出现空闲空间

 …
 */
void put(E e) throws InterruptedException;

复制代码

ArrayBlockingQueue 是最典型的的有界队列，其内部以 final 的数组保存数据，数组的

大小就决定了队列的边界，所以我们在创建 ArrayBlockingQueue 时，都要指定容量，

如

1 public ArrayBlockingQueue(int capacity, boolean fair)

复制代码

LinkedBlockingQueue，容易被误解为无边界，但其实其行为和内部代码都是基于有界

的逻辑实现的，只不过如果我们没有在创建队列时就指定容量，那么其容量限制就自动被

设置为 Integer.MAX_VALUE，成为了无界队列。

SynchronousQueue，这是一个非常奇葩的队列实现，每个删除操作都要等待插入操

作，反之每个插入操作也都要等待删除动作。那么这个队列的容量是多少呢？是 1 吗？

其实不是的，其内部容量是 0。

PriorityBlockingQueue 是无边界的优先队列，虽然严格意义上来讲，其大小总归是要

受系统资源影响。

如果我们分析不同队列的底层实现，BlockingQueue 基本都是基于锁实现，一起来看看典

型的 LinkedBlockingQueue。

我在介绍 ReentrantLock 的条件变量用法的时候分析过 ArrayBlockingQueue，不知道你

有没有注意到，其条件变量与 LinkedBlockingQueue 版本的实现是有区别的。

notEmpty、notFull 都是同一个再入锁的条件变量，而 LinkedBlockingQueue 则改进了

锁操作的粒度，头、尾操作使用不同的锁，所以在通用场景下，它的吞吐量相对要更好一

些。

下面的 take 方法与 ArrayBlockingQueue 中的实现，也是有不同的，由于其内部结构是

链表，需要自己维护元素数量值，请参考下面的代码。

DelayedQueue 和 LinkedTransferQueue 同样是无边界的队列。对于无边界的队列，

有一个自然的结果，就是 put 操作永远也不会发生其他 BlockingQueue 的那种等待情

况。

1

2

3

4

5

6

7

8

9

10

11

/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();

/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();

/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();

/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();

复制代码

1

2

3

4

5

6

7

8

9

10

public E take() throws InterruptedException {
 final E x;
 final int c;
 final AtomicInteger count = this.count;
 final ReentrantLock takeLock = this.takeLock;
 takeLock.lockInterruptibly();
 try {
 while (count.get() == 0) {
 notEmpty.await();
 }

复制代码

类似 ConcurrentLinkedQueue 等，则是基于 CAS 的无锁技术，不需要在每个操作时使用

锁，所以扩展性表现要更加优异。

相对比较另类的 SynchronousQueue，在 Java 6 中，其实现发生了非常大的变化，利用

CAS 替换掉了原本基于锁的逻辑，同步开销比较小。它是

Executors.newCachedThreadPool() 的默认队列。

队列使用场景与典型用例

在实际开发中，我提到过 Queue 被广泛使用在生产者 - 消费者场景，比如利用

BlockingQueue 来实现，由于其提供的等待机制，我们可以少操心很多协调工作，你可以

参考下面样例代码：

11

12

13

14

15

16

17

18

19

20

21

 x = dequeue();
 c = count.getAndDecrement();
 if (c > 1)
 notEmpty.signal();
 } finally {
 takeLock.unlock();
 }
 if (c == capacity)
 signalNotFull();
 return x;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class ConsumerProducer {
 public static final String EXIT_MSG = "Good bye!";
 public static void main(String[] args) {
// 使用较小的队列，以更好地在输出中展示其影响

 BlockingQueue<String> queue = new ArrayBlockingQueue<>(3);
 Producer producer = new Producer(queue);
 Consumer consumer = new Consumer(queue);
 new Thread(producer).start();
 new Thread(consumer).start();
 }

 static class Producer implements Runnable {

复制代码

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

 private BlockingQueue<String> queue;
 public Producer(BlockingQueue<String> q) {
 this.queue = q;
 }

 @Override
 public void run() {
 for (int i = 0; i < 20; i++) {
 try{
 Thread.sleep(5L);
 String msg = "Message" + i;
 System.out.println("Produced new item: " + msg);
 queue.put(msg);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 try {
 System.out.println("Time to say good bye!");
 queue.put(EXIT_MSG);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 static class Consumer implements Runnable{
 private BlockingQueue<String> queue;
 public Consumer(BlockingQueue<String> q){
 this.queue=q;
 }

 @Override
 public void run() {
 try{
 String msg;
 while(!EXIT_MSG.equalsIgnoreCase((msg = queue.take()))){
 System.out.println("Consumed item: " + msg);
 Thread.sleep(10L);
 }
 System.out.println("Got exit message, bye!");
 }catch(InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

上面是一个典型的生产者 - 消费者样例，如果使用非 Blocking 的队列，那么我们就要自己

去实现轮询、条件判断（如检查 poll 返回值是否 null）等逻辑，如果没有特别的场景要

求，Blocking 实现起来代码更加简单、直观。

前面介绍了各种队列实现，在日常的应用开发中，如何进行选择呢？

以 LinkedBlockingQueue、ArrayBlockingQueue 和 SynchronousQueue 为例，我们一

起来分析一下，根据需求可以从很多方面考量：

今天我分析了 Java 中让人眼花缭乱的各种线程安全队列，试图从几个角度，让每个队列的

特点更加明确，进而希望减少你在日常工作中使用时的困扰。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？ 今天的内容侧重于 Java 自身的角度，面试

官也可能从算法的角度来考察，所以今天留给你的思考题是，指定某种结构，比如栈，用它

实现一个 BlockingQueue，实现思路是怎样的呢？

考虑应用场景中对队列边界的要求。ArrayBlockingQueue 是有明确的容量限制的，而

LinkedBlockingQueue 则取决于我们是否在创建时指定，SynchronousQueue 则干脆

不能缓存任何元素。

从空间利用角度，数组结构的 ArrayBlockingQueue 要比 LinkedBlockingQueue 紧

凑，因为其不需要创建所谓节点，但是其初始分配阶段就需要一段连续的空间，所以初始

内存需求更大。

通用场景中，LinkedBlockingQueue 的吞吐量一般优于 ArrayBlockingQueue，因为它

实现了更加细粒度的锁操作。

ArrayBlockingQueue 实现比较简单，性能更好预测，属于表现稳定的“选手”。

如果我们需要实现的是两个线程之间接力性（handoff）的场景，按照专栏上一讲的例

子，你可能会选择 CountDownLatch，但是SynchronousQueue也是完美符合这种场景

的，而且线程间协调和数据传输统一起来，代码更加规范。

可能令人意外的是，很多时候 SynchronousQueue 的性能表现，往往大大超过其他实

现，尤其是在队列元素较小的场景。

http://time.geekbang.org/column/article/9373
http://www.baeldung.com/java-synchronous-queue

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第19讲 | Java并发包提供了哪些并发工具类？

下一篇 第21讲 | Java并发类库提供的线程池有哪几种？ 分别有什么特点？

sunlight00...
2018-06-21

 42

这个看着很吃力啊，都没接触过😂

展开

精选留言 (23)  写留言

丘壑
2018-09-13

 9

栈来实现blockqueue，个人感觉比较好的有
方案一：总共3个栈，其中2个写入栈（A、B），1个消费栈栈C（消费数据），但是有1个
写入栈是空闲的栈（B），随时等待写入，当消费栈(C)中数据为空的时候，消费线程
（await），触发数据转移，原写入栈(A)停止写入，，由空闲栈（B）接受写入的工作，原
写入栈(A)中的数据转移到消费栈（C）中，转移完成后继续（sign）继续消费，2个写入…
展开

石头狮子
2018-06-21

 7

实现课后题过程中把握以下几个维度，
1，数据操作的锁粒度。
2，计数，遍历方式。
3，数据结构空，满时线程的等待方式，有锁或无锁方式。
4，使用离散还是连续的存储结构。

展开

crazyone
2018-06-22

 5

从上面这些角度，能够理解 ConcurrentLinkedDeque 和 LinkedBlockingQueue 的主要
功能区别。 这段应该是 "ConcurrentLinkedDeque 和 LinkedBlockingDeque 的主要功
能区别"

猕猴桃 �...
2018-06-22

 4

{
 "test":[
 [
 89,
 90, …
展开

无呢可称
2018-06-27

 3

@Jerry银银。用两个栈可以实现fifo的队列

南北少卿
2018-12-14

 1

杨老师,你好,最近我debug过ConcurrentLinkedQueue的源码,第一次添加元素的时候,为什
么head指向添加的元素,而tail指向自己,始终搞不明白,经过p.casNext(null, newNode)操作
之后,这中间的变化到底是怎么回事?您能解答下吗?望指点.我的微信号:LEE794112629

展开

吕倩
2018-12-03

 1

老师你好，在读ArrayBlockingQueue源码的时候，发现很多地方都有 final
ReentrantLock lock = this.lock; 这样的语句，处于什么原因会将类变量复制一份到局部
变量，然后再使用呢？

酱了个油
2018-08-05

 1

队列的一个问题是不能持久化、不能做到分布式，有时候考虑到系统可靠性，使用的机会
不多。杨老师可以给一些使用队列的例子吗？

展开

汉彬
2018-07-17

 1

用栈实现BlockingQueue，我的理解是：栈是LIFO，BlockingQueue是FIFO，因此需要
两个栈。take时先把栈A全部入栈到栈B，然后栈B出栈得到目标元素；put时把栈B全部入
栈到栈A，然后栈A再入栈目标元素。相当于倒序一下。

不知道理解对不对，请老师指出。

展开

爱新觉罗老...
2018-07-03

 1

杨老师，“与弱一致性对应的，就是我介绍过的同步容器常见的行为“fast-fail”，也就是

检测到容器在遍历过程中发生了修改，则抛出 ConcurrentModificationException，不再
继续遍历。”
这一段落里，快速失败的英文在doc上是“fail-fast”，在ArrayList源码中文档可以搜到。
还有，同步容器不应该是“fail-safe”吗？

展开

作者回复: 谢谢指出，我查查是不是我记反了

Jerry银银
2018-06-22

 1

用栈来实现BlockingQueue，换句话是说，用先进后出的数据结构来实现先进先出的数据
结构，怎么感觉听起来不那么对劲呢？请指点

展开

灰飞灰猪不...
2018-06-21

 1

老师 线程池中如果线程已经运行结束则删除该线程。如何判断线程已经运行结束了呢？源
码中我看见按照线程的状态，我不清楚这些状态值哪来的。java代码有判断线程状态的方
法吗？谢谢老师

作者回复: 所谓结束是指terminated？正常的线程池移除工作线程，要么线程意外退出，比如任务

抛异常，要么线程闲置，又规定了闲置时间；线程池中线程是把额外封装的，本来下章写了，内

容篇幅超标移到后面了，慢慢来；有，建议学会看文档，自己找答案

石头狮子
2018-06-21

 1

实现课后题过程中把握以下几个维度，
1，数据操作的锁粒度。
2，计数，遍历方式。
3，数据结构空，满时线程的等待方式，有锁或无锁方式。
4，使用离散还是连续的存储结构。

展开

Lighters
2019-04-27



希望能够增加一些具体的业务使用场景，否则只是单纯的分析，太抽象了

Zach_
2019-04-27



大致思路：（后续需要手动实现）
一把ReentrantLock
两个Condition notEmpty notFull

栈为空 notEmpty.await() --- 出栈阻塞 …
展开

杭州
2018-11-10



杨老师你好，遇到个问题，200个并发线程池阻塞读linkBlockingQueue队列，偶尔会出现
阻塞时会线程cpu很好。jstack看了很多lock。会不会出现线程离开线程池，去干别的任
务，干了一半又回到线程池中干活。两边出现死锁？

展开

作者回复: 没有太明白问题，线程离开线程池是什么情况？“很好”是很“高”吗？很多“锁”但

并没有死锁，我的理解对吗？配合top，看看占cpu的线程栈具体是什么情况吧，

杭州
2018-11-10



杨老师你好，我碰到个问题： 200个线程池 阻塞读take（）linkblockingqueue队列，偶
尔会发现线程池中的阻塞线程cpu突高。jstack看了有很多的lock。怀疑是池程离开线程池
去干别的活，干了一半又回到线程池中，出现死锁表现cpu高。不知道是什么这个原因，不
知道怎么解决？

展开

小飞哥 ...
2018-10-11



向我们这些写业务代码的应该如何使用并发类和框架？

展开

null
2018-09-11



SynchronousQueue，删除操作依赖插入操作，而插入操作又依赖删除操作，死锁了么？
SynchronousQueue 一般应用在啥场景呢？

展开

