
第21讲 | Java并发类库提供的线程池有哪几种？ 分别有什么特点？
2018-06-23 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 12:30 大小 5.73M

我在专栏第 17 讲中介绍过线程是不能够重复启动的，创建或销毁线程存在一定的开销，所

以利用线程池技术来提高系统资源利用效率，并简化线程管理，已经是非常成熟的选择。

今天我要问你的问题是，Java 并发类库提供的线程池有哪几种？ 分别有什么特点？

典型回答

通常开发者都是利用 Executors 提供的通用线程池创建方法，去创建不同配置的线程池，

主要区别在于不同的 ExecutorService 类型或者不同的初始参数。

Executors 目前提供了 5 种不同的线程池创建配置：





 下载APP 

http://time.geekbang.org/column/article/9103


考点分析

Java 并发包中的 Executor 框架无疑是并发编程中的重点，今天的题目考察的是对几种标

准线程池的了解，我提供的是一个针对最常见的应用方式的回答。

在大多数应用场景下，使用 Executors 提供的 5 个静态工厂方法就足够了，但是仍然可能

需要直接利用 ThreadPoolExecutor 等构造函数创建，这就要求你对线程构造方式有进一

步的了解，你需要明白线程池的设计和结构。

另外，线程池这个定义就是个容易让人误解的术语，因为 ExecutorService 除了通常意义

上“池”的功能，还提供了更全面的线程管理、任务提交等方法。

Executor 框架可不仅仅是线程池，我觉得至少下面几点值得深入学习：

newCachedThreadPool()，它是一种用来处理大量短时间工作任务的线程池，具有几个

鲜明特点：它会试图缓存线程并重用，当无缓存线程可用时，就会创建新的工作线程；如

果线程闲置的时间超过 60 秒，则被终止并移出缓存；长时间闲置时，这种线程池，不会

消耗什么资源。其内部使用 SynchronousQueue 作为工作队列。

newFixedThreadPool(int nThreads)，重用指定数目（nThreads）的线程，其背后使

用的是无界的工作队列，任何时候最多有 nThreads 个工作线程是活动的。这意味着，如

果任务数量超过了活动队列数目，将在工作队列中等待空闲线程出现；如果有工作线程退

出，将会有新的工作线程被创建，以补足指定的数目 nThreads。

newSingleThreadExecutor()，它的特点在于工作线程数目被限制为 1，操作一个无界的

工作队列，所以它保证了所有任务的都是被顺序执行，最多会有一个任务处于活动状态，

并且不允许使用者改动线程池实例，因此可以避免其改变线程数目。

newSingleThreadScheduledExecutor() 和 newScheduledThreadPool(int

corePoolSize)，创建的是个 ScheduledExecutorService，可以进行定时或周期性的工

作调度，区别在于单一工作线程还是多个工作线程。

newWorkStealingPool(int parallelism)，这是一个经常被人忽略的线程池，Java 8 才

加入这个创建方法，其内部会构建ForkJoinPool，利用Work-Stealing算法，并行地处

理任务，不保证处理顺序。

掌握 Executor 框架的主要内容，至少要了解组成与职责，掌握基本开发用例中的使用。

对线程池和相关并发工具类型的理解，甚至是源码层面的掌握。

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://en.wikipedia.org/wiki/Work_stealing


知识扩展

首先，我们来看看 Executor 框架的基本组成，请参考下面的类图。

我们从整体上把握一下各个类型的主要设计目的：

Executor 的设计是源于 Java 早期线程 API 使用的教训，开发者在实现应用逻辑时，被太

多线程创建、调度等不相关细节所打扰。就像我们进行 HTTP 通信，如果还需要自己操作

TCP 握手，开发效率低下，质量也难以保证。

实践中有哪些常见问题，基本的诊断思路是怎样的。

如何根据自身应用特点合理使用线程池。

Executor 是一个基础的接口，其初衷是将任务提交和任务执行细节解耦，这一点可以体

会其定义的唯一方法。

1 void execute(Runnable command);

复制代码



注意，这个例子输入的可是Callable，它解决了 Runnable 无法返回结果的困扰。

下面我就从源码角度，分析线程池的设计与实现，我将主要围绕最基础的

ThreadPoolExecutor 源码。ScheduledThreadPoolExecutor 是 ThreadPoolExecutor

的扩展，主要是增加了调度逻辑，如想深入了解，你可以参考相关教程。而 ForkJoinPool

则是为 ForkJoinTask 定制的线程池，与通常意义的线程池有所不同。

这部分内容比较晦涩，罗列概念也不利于你去理解，所以我会配合一些示意图来说明。在现

实应用中，理解应用与线程池的交互和线程池的内部工作过程，你可以参考下图。

ExecutorService 则更加完善，不仅提供 service 的管理功能，比如 shutdown 等方

法，也提供了更加全面的提交任务机制，如返回Future而不是 void 的 submit 方法。

1 <T> Future<T> submit(Callable<T> task);

复制代码

Java 标准类库提供了几种基础实现，比如ThreadPoolExecutor、

ScheduledThreadPoolExecutor、ForkJoinPool。这些线程池的设计特点在于其高度的

可调节性和灵活性，以尽量满足复杂多变的实际应用场景，我会进一步分析其构建部分的

源码，剖析这种灵活性的源头。

Executors 则从简化使用的角度，为我们提供了各种方便的静态工厂方法。

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Callable.html
https://www.journaldev.com/2340/java-scheduler-scheduledexecutorservice-scheduledthreadpoolexecutor-example
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ScheduledThreadPoolExecutor.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html


简单理解一下：

线程池的工作线程被抽象为静态内部类 Worker，基于AQS实现。

从上面的分析，就可以看出线程池的几个基本组成部分，一起都体现在线程池的构造函数

中，从字面我们就可以大概猜测到其用意：

工作队列负责存储用户提交的各个任务，这个工作队列，可以是容量为 0 的

SynchronousQueue（使用 newCachedThreadPool），也可以是像固定大小线程池

（newFixedThreadPool）那样使用 LinkedBlockingQueue。

1

2

private final BlockingQueue<Runnable> workQueue;
 

复制代码

内部的“线程池”，这是指保持工作线程的集合，线程池需要在运行过程中管理线程创

建、销毁。例如，对于带缓存的线程池，当任务压力较大时，线程池会创建新的工作线

程；当业务压力退去，线程池会在闲置一段时间（默认 60 秒）后结束线程。

1 private final HashSet<Worker> workers = new HashSet<>();

复制代码

ThreadFactory 提供上面所需要的创建线程逻辑。

如果任务提交时被拒绝，比如线程池已经处于 SHUTDOWN 状态，需要为其提供处理逻

辑，Java 标准库提供了类似ThreadPoolExecutor.AbortPolicy等默认实现，也可以按照

实际需求自定义。

corePoolSize，所谓的核心线程数，可以大致理解为长期驻留的线程数目（除非设置了

allowCoreThreadTimeOut）。对于不同的线程池，这个值可能会有很大区别，比如

newFixedThreadPool 会将其设置为 nThreads，而对于 newCachedThreadPool 则是

为 0。

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html


通过配置不同的参数，我们就可以创建出行为大相径庭的线程池，这就是线程池高度灵活性

的基础。

进一步分析，线程池既然有生命周期，它的状态是如何表征的呢？

这里有一个非常有意思的设计，ctl 变量被赋予了双重角色，通过高低位的不同，既表示线

程池状态，又表示工作线程数目，这是一个典型的高效优化。试想，实际系统中，虽然我们

可以指定线程极限为 Integer.MAX_VALUE，但是因为资源限制，这只是个理论值，所以完

全可以将空闲位赋予其他意义。

maximumPoolSize，顾名思义，就是线程不够时能够创建的最大线程数。同样进行对

比，对于 newFixedThreadPool，当然就是 nThreads，因为其要求是固定大小，而

newCachedThreadPool 则是 Integer.MAX_VALUE。

keepAliveTime 和 TimeUnit，这两个参数指定了额外的线程能够闲置多久，显然有些线

程池不需要它。

workQueue，工作队列，必须是 BlockingQueue。

1

2

3

4

5

6

7

8

public ThreadPoolExecutor(int corePoolSize,
                       int maximumPoolSize,
                       long keepAliveTime,
                       TimeUnit unit,
                       BlockingQueue<Runnable> workQueue,
                       ThreadFactory threadFactory,
                       RejectedExecutionHandler handler)
 

复制代码

1

2

3

4

5

6

7

8

9

10

11

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 真正决定了工作线程数的理论上限 
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int COUNT_MASK = (1 << COUNT_BITS) - 1;
// 线程池状态，存储在数字的高位

private static final int RUNNING = -1 << COUNT_BITS;
…
// Packing and unpacking ctl
private static int runStateOf(int c)  { return c & ~COUNT_MASK; }
private static int workerCountOf(int c)  { return c & COUNT_MASK; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

复制代码



为了让你能对线程生命周期有个更加清晰的印象，我这里画了一个简单的状态流转图，对线

程池的可能状态和其内部方法之间进行了对应，如果有不理解的方法，请参考 Javadoc。

注意，实际 Java 代码中并不存在所谓 Idle 状态，我添加它仅仅是便于理解。

前面都是对线程池属性和构建等方面的分析，下面我选择典型的 execute 方法，来看看其

是如何工作的，具体逻辑请参考我添加的注释，配合代码更加容易理解。

1

2

3

4

5

6

7

8

9

public void execute(Runnable command) {
…
 int c = ctl.get();
// 检查工作线程数目，低于 corePoolSize 则添加 Worker
 if (workerCountOf(c) < corePoolSize) {
     if (addWorker(command, true))
         return;
     c = ctl.get();
 }

复制代码



线程池实践

线程池虽然为提供了非常强大、方便的功能，但是也不是银弹，使用不当同样会导致问题。

我这里介绍些典型情况，经过前面的分析，很多方面可以自然的推导出来。

线程池大小的选择策略

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// isRunning 就是检查线程池是否被 shutdown
// 工作队列可能是有界的，offer 是比较友好的入队方式

 if (isRunning(c) && workQueue.offer(command)) {
     int recheck = ctl.get();
// 再次进行防御性检查

     if (! isRunning(recheck) && remove(command))
         reject(command);
     else if (workerCountOf(recheck) == 0)
         addWorker(null, false);
 }
// 尝试添加一个 worker，如果失败意味着已经饱和或者被 shutdown 了
 else if (!addWorker(command, false))
     reject(command);
}

避免任务堆积。前面我说过 newFixedThreadPool 是创建指定数目的线程，但是其工作

队列是无界的，如果工作线程数目太少，导致处理跟不上入队的速度，这就很有可能占用

大量系统内存，甚至是出现 OOM。诊断时，你可以使用 jmap 之类的工具，查看是否有

大量的任务对象入队。

避免过度扩展线程。我们通常在处理大量短时任务时，使用缓存的线程池，比如在最新的

HTTP/2 client API 中，目前的默认实现就是如此。我们在创建线程池的时候，并不能准

确预计任务压力有多大、数据特征是什么样子（大部分请求是 1K 、100K 还是 1M 以

上？），所以很难明确设定一个线程数目。

另外，如果线程数目不断增长（可以使用 jstack 等工具检查），也需要警惕另外一种可

能性，就是线程泄漏，这种情况往往是因为任务逻辑有问题，导致工作线程迟迟不能被释

放。建议你排查下线程栈，很有可能多个线程都是卡在近似的代码处。

避免死锁等同步问题，对于死锁的场景和排查，你可以复习专栏第 18 讲。

尽量避免在使用线程池时操作 ThreadLocal，同样是专栏第 17 讲已经分析过的，通过今

天的线程池学习，应该更能理解其原因，工作线程的生命周期通常都会超过任务的生命周

期。

http://time.geekbang.org/column/article/9266
http://time.geekbang.org/column/article/9103


上面我已经介绍过，线程池大小不合适，太多或太少，都会导致麻烦，所以我们需要去考虑

一个合适的线程池大小。虽然不能完全确定，但是有一些相对普适的规则和思路。

这些时间并不能精准预计，需要根据采样或者概要分析等方式进行计算，然后在实际中验证

和调整。

另外，在实际工作中，不要把解决问题的思路全部指望到调整线程池上，很多时候架构上的

改变更能解决问题，比如利用背压机制的Reactive Stream、合理的拆分等。

今天，我从 Java 创建的几种线程池开始，对 Executor 框架的主要组成、线程池结构与生

命周期等方面进行了讲解和分析，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是从逻辑上理解，线程池创建

和生命周期。请谈一谈，如果利用 newSingleThreadExecutor() 创建一个线程池，

corePoolSize、maxPoolSize 等都是什么数值？ThreadFactory 可能在线程池生命周期中

被使用多少次？怎么验证自己的判断？

如果我们的任务主要是进行计算，那么就意味着 CPU 的处理能力是稀缺的资源，我们能

够通过大量增加线程数提高计算能力吗？往往是不能的，如果线程太多，反倒可能导致大

量的上下文切换开销。所以，这种情况下，通常建议按照 CPU 核的数目 N 或者 N+1。

如果是需要较多等待的任务，例如 I/O 操作比较多，可以参考 Brain Goetz 推荐的计算

方法：

1 线程数 = CPU 核数 × 目标 CPU 利用率 ×（1 + 平均等待时间 / 平均工作时间）

复制代码

上面是仅仅考虑了 CPU 等限制，实际还可能受各种系统资源限制影响，例如我最近就在

Mac OS X 上遇到了大负载时ephemeral 端口受限的情况。当然，我是通过扩大可用端

口范围解决的，如果我们不能调整资源的容量，那么就只能限制工作线程的数目了。这里

的资源可以是文件句柄、内存等。

http://www.reactive-streams.org/
http://danielmendel.github.io/blog/2013/04/07/benchmarkers-beware-the-ephemeral-port-limit/


请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第20讲 | 并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别？

下一篇 第22讲 | AtomicInteger底层实现原理是什么？如何在自己的产品代码中应用CAS操作？

I am a ...
2018-06-23

 20

通过看源码可以得知，core和max都是1，而且通过
FinalizableDelegatedExecutorService进行了包装，保证线程池无法修改。同时
shutdown方法通过调用interruptIdleWorkers方法，去停掉没有工作的线程，而
shutdownNow方法是直接粗暴的停掉所有线程。无论是shutdown还是shutdownNow都

精选留言 (22)  写留言



不会进行等待，都会直接将线程池状态设置成shutdown或者stop，如果需要等待，需要…
展开

作者回复: 不错，很棒的总结； 

我问threadFactory次数，其实是问worker都在什么情况下会被创建，比如，比较特别的，任务

抛异常时；随便自定义一个threadfactory，模拟提交任务就能体会到

约书亚
2018-06-23

 10

疑问，为什么当初sun的线程池模式要设计成队列满了才能创建非核心线程？类比其他类似
池的功能实现，很多都是设置最小数最大数，达到最大数才向等待队列里加入，比如有的
连接池实现。

作者回复: Doug Lea这个实现基本是工业标准了，除非特定场景需求

三木子
2018-06-23

 7

我觉得还有一点很重要，就是放在线程池中的线程要捕获异常，如果直接抛出异常，每次
都会创建线程，也就等于线程池没有发挥作用，如果大并发下一直创建线程可能会导致
JVM挂掉。最近遇到的一个坑

作者回复: 任务出异常是要避免

Harry陈祥
2019-02-12

 4

老师您好。有次面试，面试官问：为什么java的线程池当核心线程满了以后，先往
blockingQueue中存任务，queue满了以后才会创建非核心线程？ 是在问，为什么要这么
设计？ 
请问这个问题应该怎么回答？

展开



沈琦斌
2018-06-28 

4

老师，我想问的是cache的线程池大小是1，每次还要新创建，那和我自己创建而不用线程
池有什么区别？

作者回复: 你是说cachedthreadpool？那个大小是浮动的，不是1；如果说single，

executorservice毕竟还提供了工作队列，生命周期管理，工作线程维护等很多事，还是要高效

欣
2018-07-04

 1

杨老师，我照着文章翻看源码，下面那块是不是不太对？ 
---------------- 
Executors 目前提供了 5 种不同的线程池创建配置： 
 
newSingleThreadExecutor，它创建的是个 FinalizableDelegatedExecutorService …
展开

作者回复: 谢谢指出

镰仓
2018-06-28

 1

听了一段时间课程，质量很高。我的需求是android JavaVM

作者回复: android我并没有特别的经验，尽管很多方面是通用的

Zach_
2019-04-28



core/max size都是1。但是后面的 我就不知道怎么验证了

木刻
2019-03-19



老师好，如果我一台服务器上跑好几个程序，每个程序都有自己的线程池，那每个程序中



的线程池数量都配置自己本程序根据CPU核数和IO等算出的理论值吗

展开

Ifdevil
2019-03-04



老师您好，我看了线程池源码，里面是用HashSet存放worker的，为什么这里用hashset
呢？去重？线程池需要去重吗？

展开

康
2019-03-03



我的理解，设置非核心线程的目的是防止任务数的段时间激增，导致任务数过多，从而核
心线程处理时间太长。正常情况下要保证线程数小于核心线程数，非核心线程会过一段时
间就被移出，保证了资源的利用，而核心一般不会变少

展开

不告诉你
2019-02-22



无论是创建核心线程还是非核心线程，都需要获取全局锁。只有在工作队列满了以后才去
创建非核心线程，应该就是为了在时间上尽量延后非核心线程的创建，为了线程池的性能
做考虑吧。

森
2019-02-13



老师你好，如果创建一个线程池，核心线程数为1，最大线程数为10，现在有100个线程并
发，这90个线程怎么处理的（全部压在栈中吗）？假设栈中最多只能存放50个线程，剩下
40个线程放在哪里？

JasonLai
2019-02-10



老师你好，我在学些线程池时候遇到一个说法，创建线程池不推荐使用executors 
而是使用threadpoolexecutor去创建。首先executor都是继承于threadpoolexecutor 其
次是编写的线程池更为明确运行规则，有助于规避资源耗尽的风险。请老师分析下这种说
法，其次是您的观点



展开

作者回复: 看应用是否有类似高并发、高负载等需求，如果没有，简便的方法也许就足够了；如果

有，用构造函数创建是可取的，例如，可以限制最大线程数目，避免过度创建线程而OOM等

GK java
2019-01-26



线程池到底需不需要关闭

展开

作者回复: 通常建议明确关闭，要看具体场景，我们的应用对于关闭本身是如何定义，有没有要

求，什么时机触发，需要保证优雅的退出吗？

Eliefly
2019-01-15



写了个简单demo玩了下。 
创建线程池会初始化线程工厂，工作线程是在提交任务的创建的。工作线程在执行任务中
抛出异常，再次提交任务会又新建工作线程。newFixedThreadPool 正常执行任务时会优
先创建线程已达到核心线程数，不会优先复用空闲工作线程。 
``` …
展开

作者回复: 实践是好习惯

Eliefly
2019-01-15



Geotz那本java并发实战线程池大小计算还有个CPU利用率？ 
线程数 = CPU 核数 × CPU利用率 ×（1 + 平均等待时间 / 平均工作时间）

作者回复: 难道我记错了...我去翻一下



夏日
2018-09-10



老师好，newsingle 可以做类似单机版的秒杀吧？当然秒杀是分布式的。总觉得这么好的
特点会被其他中间件封装利用。

展开

绍晖
2018-08-10



请谈一谈，如果利用 newSingleThreadExecutor() 创建一个线程池，corePoolSize、
maxPoolSize 等都是什么数值？ThreadFactory 可能在线程池生命周期中被使用多少次？
怎么验证自己的判断？

洗头用酱油
2018-08-03



老师，我看NewSingleExecutor 所有的队列是LinkedBlockingQueue，它好像是有界的
队列不是无界的吧？

作者回复: Linked本身是可选的，不指定容量就是int max，newsingle记得就没指定，换个角度

默认指定什么好呢


