
第25讲 | 谈谈JVM内存区域的划分，哪些区域可能发生
OutOfMemoryError?
2018-07-03 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:42 大小 4.90M

今天，我将从内存管理的角度，进一步探索 Java 虚拟机（JVM）。垃圾收集机制为我们打

理了很多繁琐的工作，大大提高了开发的效率，但是，垃圾收集也不是万能的，懂得 JVM

内部的内存结构、工作机制，是设计高扩展性应用和诊断运行时问题的基础，也是 Java 工

程师进阶的必备能力。

今天我要问你的问题是，谈谈 JVM 内存区域的划分，哪些区域可能发生

OutOfMemoryError？

典型回答





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

通常可以把 JVM 内存区域分为下面几个方面，其中，有的区域是以线程为单位，而有的区

域则是整个 JVM 进程唯一的。

首先，程序计数器（PC，Program Counter Register）。在 JVM 规范中，每个线程都有

它自己的程序计数器，并且任何时间一个线程都只有一个方法在执行，也就是所谓的当前方

法。程序计数器会存储当前线程正在执行的 Java 方法的 JVM 指令地址；或者，如果是在

执行本地方法，则是未指定值（undefined）。

第二，Java 虚拟机栈（Java Virtual Machine Stack），早期也叫 Java 栈。每个线程在创

建时都会创建一个虚拟机栈，其内部保存一个个的栈帧（Stack Frame），对应着一次次的

Java 方法调用。

前面谈程序计数器时，提到了当前方法；同理，在一个时间点，对应的只会有一个活动的栈

帧，通常叫作当前帧，方法所在的类叫作当前类。如果在该方法中调用了其他方法，对应的

新的栈帧会被创建出来，成为新的当前帧，一直到它返回结果或者执行结束。JVM 直接对

Java 栈的操作只有两个，就是对栈帧的压栈和出栈。

栈帧中存储着局部变量表、操作数（operand）栈、动态链接、方法正常退出或者异常退

出的定义等。

第三，堆（Heap），它是 Java 内存管理的核心区域，用来放置 Java 对象实例，几乎所有

创建的 Java 对象实例都是被直接分配在堆上。堆被所有的线程共享，在虚拟机启动时，我

们指定的“Xmx”之类参数就是用来指定最大堆空间等指标。

理所当然，堆也是垃圾收集器重点照顾的区域，所以堆内空间还会被不同的垃圾收集器进行

进一步的细分，最有名的就是新生代、老年代的划分。

第四，方法区（Method Area）。这也是所有线程共享的一块内存区域，用于存储所谓的

元（Meta）数据，例如类结构信息，以及对应的运行时常量池、字段、方法代码等。

由于早期的 Hotspot JVM 实现，很多人习惯于将方法区称为永久代（Permanent

Generation）。Oracle JDK 8 中将永久代移除，同时增加了元数据区（Metaspace）。

第五，运行时常量池（Run-Time Constant Pool），这是方法区的一部分。如果仔细分析

过反编译的类文件结构，你能看到版本号、字段、方法、超类、接口等各种信息，还有一项

信息就是常量池。Java 的常量池可以存放各种常量信息，不管是编译期生成的各种字面

量，还是需要在运行时决定的符号引用，所以它比一般语言的符号表存储的信息更加宽泛。

第六，本地方法栈（Native Method Stack）。它和 Java 虚拟机栈是非常相似的，支持对

本地方法的调用，也是每个线程都会创建一个。在 Oracle Hotspot JVM 中，本地方法栈

和 Java 虚拟机栈是在同一块儿区域，这完全取决于技术实现的决定，并未在规范中强制。

考点分析

这是个 JVM 领域的基础题目，我给出的答案依据的是JVM 规范中运行时数据区定义，这也

和大多数书籍和资料解读的角度类似。

JVM 内部的概念庞杂，对于初学者比较晦涩，我的建议是在工作之余，还是要去阅读经典

书籍，比如我推荐过多次的《深入理解 Java 虚拟机》。

今天这一讲作为 Java 虚拟机内存管理的开篇，我会侧重于：

注意，具体 JVM 的内存结构，其实取决于其实现，不同厂商的 JVM，或者同一厂商发布的

不同版本，都有可能存在一定差异。我在下面的分析中，还会介绍 Oracle Hotspot JVM

的部分设计变化。

知识扩展

首先，为了让你有个更加直观、清晰的印象，我画了一个简单的内存结构图，里面展示了我

前面提到的堆、线程栈等区域，并从数量上说明了什么是线程私有，例如，程序计数器、

Java 栈等，以及什么是 Java 进程唯一。另外，还额外划分出了直接内存等区域。

分析广义上的 JVM 内存结构或者说 Java 进程内存结构。

谈到 Java 内存模型，不可避免的要涉及 OutOfMemory（OOM）问题，那么在 Java

里面存在哪些种 OOM 的可能性，分别对应哪个内存区域的异常状况呢？
防止断

更 请务
必加

首发微
信：1

71614
3665

https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.5

这张图反映了实际中 Java 进程内存占用，与规范中定义的 JVM 运行时数据区之间的差

别，它可以看作是运行时数据区的一个超集。毕竟理论上的视角和现实中的视角是有区别

的，规范侧重的是通用的、无差别的部分，而对于应用开发者来说，只要是 Java 进程在运

行时会占用，都会影响到我们的工程实践。

我这里简要介绍两点区别：

如果深入到 JVM 的实现细节，你会发现一些结论似乎有些模棱两可，比如：

直接内存（Direct Memory）区域，它就是我在专栏第 12 讲中谈到的 Direct Buffer 所

直接分配的内存，也是个容易出现问题的地方。尽管，在 JVM 工程师的眼中，并不认为

它是 JVM 内部内存的一部分，也并未体现 JVM 内存模型中。

JVM 本身是个本地程序，还需要其他的内存去完成各种基本任务，比如，JIT Compiler

在运行时对热点方法进行编译，就会将编译后的方法储存在 Code Cache 里面；GC 等

功能需要运行在本地线程之中，类似部分都需要占用内存空间。这些是实现 JVM JIT 等

功能的需要，但规范中并不涉及。

Java 对象是不是都创建在堆上的呢？

http://time.geekbang.org/column/article/8393

我注意到有一些观点，认为通过逃逸分析，JVM 会在栈上分配那些不会逃逸的对象，这在

理论上是可行的，但是取决于 JVM 设计者的选择。据我所知，Oracle Hotspot JVM 中并

未这么做，这一点在逃逸分析相关的文档里已经说明，所以可以明确所有的对象实例都是创

建在堆上。

接下来，我们来看看什么是 OOM 问题，它可能在哪些内存区域发生？

首先，OOM 如果通俗点儿说，就是 JVM 内存不够用了，javadoc 中对

OutOfMemoryError的解释是，没有空闲内存，并且垃圾收集器也无法提供更多内存。

这里面隐含着一层意思是，在抛出 OutOfMemoryError 之前，通常垃圾收集器会被触发，

尽其所能去清理出空间，例如：

当然，也不是在任何情况下垃圾收集器都会被触发的，比如，我们去分配一个超大对象，类

似一个超大数组超过堆的最大值，JVM 可以判断出垃圾收集并不能解决这个问题，所以直

接抛出 OutOfMemoryError。

从我前面分析的数据区的角度，除了程序计数器，其他区域都有可能会因为可能的空间不足

发生 OutOfMemoryError，简单总结如下：

目前很多书籍还是基于 JDK 7 以前的版本，JDK 已经发生了很大变化，Intern 字符串的

缓存和静态变量曾经都被分配在永久代上，而永久代已经被元数据区取代。但是，Intern

字符串缓存和静态变量并不是被转移到元数据区，而是直接在堆上分配，所以这一点同样

符合前面一点的结论：对象实例都是分配在堆上。

我在专栏第 4 讲的引用机制分析中，已经提到了 JVM 会去尝试回收软引用指向的对象

等。

在java.nio.BIts.reserveMemory() 方法中，我们能清楚的看到，System.gc() 会被调

用，以清理空间，这也是为什么在大量使用 NIO 的 Direct Buffer 之类时，通常建议不

要加下面的参数，毕竟是个最后的尝试，有可能避免一定的内存不足问题。

1 -XX:+DisableExplictGC

复制代码

https://en.wikipedia.org/wiki/Escape_analysis
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html#escapeAnalysis
https://docs.oracle.com/javase/9/docs/api/java/lang/OutOfMemoryError.html
http://time.geekbang.org/column/article/6970
http://hg.openjdk.java.net/jdk/jdk/file/9f62267e79df/src/java.base/share/classes/java/nio/Bits.java

今天是 JVM 内存部分的第一讲，算是我们先进行了热身准备，我介绍了主要的内存区域，

以及在不同版本 Hotspot JVM 内部的变化，并且分析了各区域是否可能产生

OutOfMemoryError，以及 OOME 发生的典型情况。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是，我在试图分配一个

100M bytes 大数组的时候发生了 OOME，但是 GC 日志显示，明明堆上还有远不止

100M 的空间，你觉得可能问题的原因是什么？想要弄清楚这个问题，还需要什么信息

呢？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

堆内存不足是最常见的 OOM 原因之一，抛出的错误信息

是“java.lang.OutOfMemoryError:Java heap space”，原因可能千奇百怪，例如，可

能存在内存泄漏问题；也很有可能就是堆的大小不合理，比如我们要处理比较可观的数据

量，但是没有显式指定 JVM 堆大小或者指定数值偏小；或者出现 JVM 处理引用不及

时，导致堆积起来，内存无法释放等。

而对于 Java 虚拟机栈和本地方法栈，这里要稍微复杂一点。如果我们写一段程序不断的

进行递归调用，而且没有退出条件，就会导致不断地进行压栈。类似这种情况，JVM 实

际会抛出 StackOverFlowError；当然，如果 JVM 试图去扩展栈空间的的时候失败，则

会抛出 OutOfMemoryError。

对于老版本的 Oracle JDK，因为永久代的大小是有限的，并且 JVM 对永久代垃圾回收

（如，常量池回收、卸载不再需要的类型）非常不积极，所以当我们不断添加新类型的时

候，永久代出现 OutOfMemoryError 也非常多见，尤其是在运行时存在大量动态类型生

成的场合；类似 Intern 字符串缓存占用太多空间，也会导致 OOM 问题。对应的异常信

息，会标记出来和永久代相关：“java.lang.OutOfMemoryError: PermGen space”。

随着元数据区的引入，方法区内存已经不再那么窘迫，所以相应的 OOM 有所改观，出

现 OOM，异常信息则变成了：“java.lang.OutOfMemoryError: Metaspace”。

直接内存不足，也会导致 OOM，这个已经专栏第 11 讲介绍过。

拼课微
信：1

71614
3665

http://time.geekbang.org/column/article/8369

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第24讲 | 有哪些方法可以在运行时动态生成一个Java类？

下一篇 第26讲 | 如何监控和诊断JVM堆内和堆外内存使用？

I am a ...
2018-07-03

 104

如果仅从jvm的角度来看，要看下新生代和老年代的垃圾回收机制是什么。如果新生代是
serial，会默认使用copying算法，利用两块eden和survivor来进行处理。但是默认当遇到
超大对象时，会直接将超大对象放置到老年代中，而不用走正常对象的存活次数记录。因
为要放置的是一个byte数组，那么必然需要申请连续的空间，当空间不足时，会进行gc操
作。这里又需要看老年代的gc机制是哪一种。如果是serial old，那么会采用mark…
展开

作者回复: 非常不错的总结

精选留言 (39)  写留言

石头狮子
2018-07-03

 15

1，新生代大小过小。无法分配足够的内存。同时也老年代过小，导致提升失败。这时系统
认为没有足够的空间存放该100M数据。
2，栈可以抽象的看成计算资源。堆看成存储资源。计算资源不共享，不会发生线程安全问
题。堆资源共享，
容易发生线程安全问题。 …
展开

鸡肉饭饭
2018-07-03

 10

我们拿JDK7来说，有可能的原因是JVM的剩余内存有100M，但是它是分在不同年龄代的
内存区域。

因此应当单独的去查看每一块eden，survivor，old的大小，(通过SurvivorRatio知道s和e
的比例大小，通过MaxNewSize知道young和old的比例)看看这三块区域是否有超过100…
展开

LenX
2018-07-03

 8

从不同的垃圾收集器角度来看：

首先，数组的分配是需要连续的内存空间的（据说，有个别非主流JVM支持大数组用不连
续的内存空间分配🤔）。所以：
 …
展开

作者回复: 很好的视角，g1 region之类确实有影响，另外g1还是有年代的概念的

爱吃芒果的...
2018-07-03

 6

因为给数组分配的是连续地址，而显示的是总的地址，不管是不是连续的。

作者回复: 也对，最好综合考虑堆内存结构、gc区别等，后续会讲解

tyson
2018-07-03

 5

堆内存100M 包含了新生代(eden+s0+1)和老年代，大对象一般分配在老年代，那么最有
可能在分配过程中老年代的空间不足。

展开

作者回复: 不错，可能性很多，其实和gc的选择也有关，例如g1 region比较小

任鹏斌
2018-08-06

 4

老师既然元数据区也存在溢出，那么为什么要用元数据区替换永久代呢，有什么好处吗？

作者回复: metaspace 默认是自增的，永久带做不到

markin
2018-07-08

 3

老师，能否跟我们介绍一下您平时获取资料的渠道。比如apache的一些开源项目，官网上
就有很丰富的文档。但是我们获取jvm相关文档的渠道少之又少，无非就是博客或者书籍，
这些都比较繁杂，并且可能参杂着很多难以识别的错误观点。授人以鱼不如授人以渔，先
谢谢老师了。

展开

作者回复: Oracle官网也提供了很多好的文档：

虚拟机规范 https://docs.oracle.com/javase/specs/jvms/se8/html/index.html

诊断指南

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/index.html

调优指南 https://docs.oracle.com/javase/10/gctuning/

Openjdk网站，或者那些感兴趣的邮件列表 http://mail.openjdk.java.net/mailman/listinfo

YouTube上查查javaone， JVM summit之类

回头有必要整理个书单之类

但这些东西太多了，自己把握一下

鹅米豆发
2018-07-03

 3

可能一，新生代没有足够的连续空间，且不能直接在老年代分配。比如
E+S0+S1>100MB，但E<100MB，S0<100MB。

可能二，大对象直接进入老年代，但老年代也没有足够的连续空间。参数
+XX:PretenureSizeThreshold。 …
展开

作者回复: 不错，下一章会有更多内存结构细节

夏洛克的救...
2019-01-14

 2

Tomcat运行中突然出现java.lang.OutOfMemoryError: PermGen space有什么工具可以
排查原因吗？

作者回复: 简单点处理，可以：

先看看永久带给了多大，如果太小，可以适当增大，使用'-XX:MaxPermSize=NNNm';

如果没开启classunloading，可以根据GC选项做配置，例如，如果使用的CMS，可以加上“-

XX:+CMSClassUnloadingEnabled -XX:+CMSPermGenSweepingEnabled”

通常就能解决问题了，如果还是有问题，那就要看看是不是出现了classloader leak，常见做法

如，取Heap dump，然后用类似Eclipse MAT这样的工具，看看有没有不回收的自定义

classloader实例之类

师琳博
2018-07-03

 2

100m的byte数组，一个byte对应一个引用，这样需要100m个的引用，所以需要的栈空间
也不会低于100m,而对象的引用是在栈中分配的，(栈和堆加起来估计不低于200m)况且还
是数组，对应的那么多引用还需要分配连续的内存空间，堆空间够的话，个人认为可能是
栈空间不足造成的

展开

刘p辉
2018-07-30

 1

1.首先堆内存是分代的，总的内存超过100M，不能保证新生代，老年代都有足够的内存。
2.为对象，数组分配内存需要连续的内存空间，有可能堆的总内存远超过要分配内存大
小，但是在即使进行过垃圾回收（标记整理）后还是不存在足够的连续内存空间就会
OOM。

展开

Geek_13514...
2018-07-29

 1

请问compressed class space区域怎么理解？是metasapce的一部分吗？如果是的话，有
些采集工具为何会把它占的大小单独显示出来呢？而不直接显示metaspace的大小呢

Steven⁰⁰...
2018-07-04

 1

数组是连续分配的，gc表明有多余100m，但有可能满足不了连续100m的空间，故会报
OOME

boom
2018-07-03

 1

小白请教一个不相关的问题～java 内存模型跟 jvm内存模型的区别与联系是啥呢～

作者回复: 怎么叫都有，看上下文，jsr133 jmm是解决多线程环境一致性，或者可以看做memory

ordering model

三口先生
2018-07-03

 1

堆内存比例设置不合理

展开

作者回复: 也对，回答比较简洁，哈哈

sunlight00...
2018-07-03

 1

堆上有空间的划分，新生代和老年代，有可能新生代的空间不够，看到的是老年代的空
间，个人猜测😃

未完的歌
2018-07-03

 1

有可能是内存碎片化问题，或者是大对象的内存分配策略问题。
需要了解一下积极垃圾收集算法，例如Mark Sweep就会造成内存碎片化问题，另外内存
分配策略也是一个关注点。

展开

作者回复: 是的

鲸息
2019-03-14



老年代碎片化了。需要查看老年代的内存使用状况，对于 CMS 可以间接地看是否打开了
每次 CMS GC 以后就立刻做一次碎片整理的开关。

展开

刘胜
2019-03-12



不知道，无法解答。可能是超过了jvm默认可以处置的内存的大小了吧？我只能猜了。

