
第30讲 | Java程序运行在Docker等容器环境有哪些新问题？
2018-07-14 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:24 大小 4.77M

如今，Docker 等容器早已不是新生事物，正在逐步成为日常开发、部署环境的一部分。

Java 能否无缝地运行在容器环境，是否符合微服务、Serverless 等新的软件架构和场景，

在一定程度上也会影响未来的技术栈选择。当然，Java 对 Docker 等容器环境的支持也在

不断增强，自然地，Java 在容器场景的实践也逐渐在面试中被涉及。我希望通过专栏今天

这一讲，能够帮你能做到胸有成竹。

今天我要问你的问题是，Java 程序运行在 Docker 等容器环境有哪些新问题？

典型回答

对于 Java 来说，Docker 毕竟是一个较新的环境，例如，其内存、CPU 等资源限制是通过

CGroup（Control Group）实现的，早期的 JDK 版本（8u131 之前）并不能识别这些限





 下载APP 

制，进而会导致一些基础问题：

从应用打包、发布等角度出发，JDK 自身就比较大，生成的镜像就更为臃肿，当我们的镜

像非常多的时候，镜像的存储等开销就比较明显了。

如果考虑到微服务、Serverless 等新的架构和场景，Java 自身的大小、内存占用、启动速

度，都存在一定局限性，因为 Java 早期的优化大多是针对长时间运行的大型服务器端应

用。

考点分析

今天的问题是个针对特定场景和知识点的问题，我给出的回答简单总结了目前业界实践中发

现的一些问题。

如果我是面试官，针对这种问题，如果你确实没有太多 Java 在 Docker 环境的使用经验，

直接说不知道，也算是可以接受的，毕竟没有人能够掌握所有知识点嘛。

但我们要清楚，有经验的面试官，一般不会以纯粹偏僻的知识点作为面试考察的目的，更多

是考察思考问题的思路和解决问题的方法。所以，如果有基础的话，可以从操作系统、容器

原理、JVM 内部机制、软件开发实践等角度，展示系统性分析新问题、新场景的能力。毕

竟，变化才是世界永远的主题，能够在新变化中找出共性与关键，是优秀工程师的必备能

力。

今天我会围绕下面几个方面展开：

如果未配置合适的 JVM 堆和元数据区、直接内存等参数，Java 就有可能试图使用超过容

器限制的内存，最终被容器 OOM kill，或者自身发生 OOM。

错误判断了可获取的 CPU 资源，例如，Docker 限制了 CPU 的核数，JVM 就可能设置

不合适的 GC 并行线程数等。

面试官可能会进一步问到，有没有想过为什么类似 Docker 这种容器环境，会有点“欺

负”Java？从 JVM 内部机制来说，问题出现在哪里？

我注意到有种论调说“没人在容器环境用 Java”，不去争论这个观点正确与否，我会从

工程实践出发，梳理问题原因和相关解决方案，并探讨下新场景下的最佳实践。

知识扩展

首先，我们先来搞清楚 Java 在容器环境的局限性来源，Docker 到底有什么特别？

虽然看起来 Docker 之类容器和虚拟机非常相似，例如，它也有自己的 shell，能独立安装

软件包，运行时与其他容器互不干扰。但是，如果深入分析你会发现，Docker 并不是一种

完全的虚拟化技术，而更是一种轻量级的隔离技术。

上面的示意图，展示了 Docker 与虚拟机的区别。从技术角度，基于 namespace，

Docker 为每个容器提供了单独的命名空间，对网络、PID、用户、IPC 通信、文件系统挂

载点等实现了隔离。对于 CPU、内存、磁盘 IO 等计算资源，则是通过 CGroup 进行管

理。如果你想了解更多 Docker 的细节，请参考相关技术文档。

Docker 仅在类似 Linux 内核之上实现了有限的隔离和虚拟化，并不是像传统虚拟化软件那

样，独立运行一个新的操作系统。如果是虚拟化的操作系统，不管是 Java 还是其他程序，

只要调用的是同一个系统 API，都可以透明地获取所需的信息，基本不需要额外的兼容性改

变。

容器虽然省略了虚拟操作系统的开销，实现了轻量级的目标，但也带来了额外复杂性，它限

制对于应用不是透明的，需要用户理解 Docker 的新行为。所以，有专家曾经说过，“幸运

的是 Docker 没有完全隐藏底层信息，但是不幸的也是 Docker 没有隐藏底层信息！”

对于 Java 平台来说，这些未隐藏的底层信息带来了很多意外的困难，主要体现在几个方

面：

https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b

第一，容器环境对于计算资源的管理方式是全新的，CGroup 作为相对比较新的技术，历史

版本的 Java 显然并不能自然地理解相应的资源限制。

第二，namespace 对于容器内的应用细节增加了一些微妙的差异，比如 jcmd、jstack 等

工具会依赖于“/proc//”下面提供的部分信息，但是 Docker 的设计改变了这部分信息的

原有结构，我们需要对原有工具进行修改以适应这种变化。

从 JVM 运行机制的角度，为什么这些“沟通障碍”会导致 OOM 等问题呢？

你可以思考一下，这个问题实际是反映了 JVM 如何根据系统资源（内存、CPU 等）情况，

在启动时设置默认参数。

这就是所谓的Ergonomics机制，例如：

这些默认参数，是根据通用场景选择的初始值。但是由于容器环境的差异，Java 的判断很

可能是基于错误信息而做出的。这就类似，我以为我住的是整栋别墅，实际上却只有一个房

间是给我住的。

更加严重的是，JVM 的一些原有诊断或备用机制也会受到影响。为保证服务的可用性，一

种常见的选择是依赖“-XX:OnOutOfMemoryError”功能，通过调用处理脚本的形式来做

一些补救措施，比如自动重启服务等。但是，这种机制是基于 fork 实现的，当 Java 进程

已经过度提交内存时，fork 新的进程往往已经不可能正常运行了。

根据前面的总结，似乎问题非常棘手，那我们在实践中，如何解决这些问题呢？

首先，如果你能够升级到最新的 JDK 版本，这个问题就迎刃而解了。

JVM 会大概根据检测到的内存大小，设置最初启动时的堆大小为系统内存的 1/64；并将

堆最大值，设置为系统内存的 1/4。

而 JVM 检测到系统的 CPU 核数，则直接影响到了 Parallel GC 的并行线程数目和 JIT

complier 线程数目，甚至是我们应用中 ForkJoinPool 等机制的并行等级。

针对这种情况，JDK 9 中引入了一些实验性的参数，以方便 Docker 和 Java“沟通”，

例如针对内存限制，可以使用下面的参数设置：

https://bugs.openjdk.java.net/browse/JDK-8179498
https://docs.oracle.com/javase/10/gctuning/ergonomics.htm#JSGCT-GUID-DB4CAE94-2041-4A16-90EC-6AE3D91EC1F1

注意，这两个参数是顺序敏感的，并且只支持 Linux 环境。而对于 CPU 核心数限定，Java

已经被修正为可以正确理解“–cpuset-cpus”等设置，无需单独设置参数。

与此同时，新增了参数用以明确指定 CPU 核心的数目。

如果实践中发现有问题，也可以使用“-XX:-UseContainerSupport”，关闭 Java 的容器

支持特性，这可以作为一种防御性机制，避免新特性破坏原有基础功能。当然，也欢迎你向

OpenJDK 社区反馈问题。

但是，如果我暂时只能使用老版本的 JDK 怎么办？

我这里有几个建议：

例如，我们可能在环境中，这样限制容器内存：

1

2

-XX:+UnlockExperimentalVMOptions
-XX:+UseCGroupMemoryLimitForHeap

复制代码

如果你可以切换到 JDK 10 或者更新的版本，问题就更加简单了。Java 对容器

（Docker）的支持已经比较完善，默认就会自适应各种资源限制和实现差异。前面提到

的实验性参数“UseCGroupMemoryLimitForHeap”已经被标记为废弃。

1 -XX:ActiveProcessorCount=N

复制代码

幸运的是，JDK 9 中的实验性改进已经被移植到 Oracle JDK 8u131 之中，你可以直接下

载相应镜像，并配置“UseCGroupMemoryLimitForHeap”，后续很有可能还会进一步

将 JDK 10 中相关的增强，应用到 JDK 8 最新的更新中。

明确设置堆、元数据区等内存区域大小，保证 Java 进程的总大小可控。

复制代码

https://store.docker.com/images/oracle-serverjre-8

那么，就可以额外配置下面的环境变量，直接指定 JVM 堆大小。

除了我前面介绍的 OOM 等问题，在很多场景中还发现 Java 在 Docker 环境中，似乎会意

外使用 Swap。具体原因待查，但很有可能也是因为 Ergonomics 机制失效导致的，我建

议配置下面参数，明确告知 JVM 系统内存限额。

也可以指定 Docker 运行参数，例如：

这是受操作系统Swappiness机制影响，当内存消耗达到一定门限，操作系统会试图将不活

跃的进程换出（Swap out），上面的参数有显式关闭 Swap 的作用。所以可以看到，Java

1 $ docker run -it --rm --name yourcontainer -p 8080:8080 -m 800M repo/your-java-containe

1 -e JAVA_OPTIONS='-Xmx300m'

复制代码

明确配置 GC 和 JIT 并行线程数目，以避免二者占用过多计算资源。

1

2

-XX:ParallelGCThreads
-XX:CICompilerCount

复制代码

1 -XX:MaxRAM=`cat /sys/fs/cgroup/memory/memory.limit_in_bytes`

复制代码

1 --memory-swappiness=0

复制代码

https://en.wikipedia.org/wiki/Swappiness

在 Docker 中的使用，从操作系统、内核到 JVM 自身机制，需要综合运用我们所掌握的知

识。

回顾我在专栏第 25 讲 JVM 内存区域的介绍，JVM 内存消耗远不止包括堆，很多时候仅仅

设置 Xmx 是不够的，MaxRAM 也有助于 JVM 合理分配其他内存区域。如果应用需要设置

更多 Java 启动参数，但又不确定什么数值合理，可以试试一些社区提供的工具，但要注意

通用工具的局限性。

更进一步来说，对于容器镜像大小的问题，如果你使用的是 JDK 9 以后的版本，完全可以

使用 jlink 工具定制最小依赖的 Java 运行环境，将 JDK 裁剪为几十 M 的大小，这样运行

起来并不困难。

今天我从 Docker 环境中 Java 可能出现的问题开始，分析了为什么容器环境对应用并不透

明，以及这种偏差干扰了 JVM 的相关机制。最后，我从实践出发，介绍了主要问题的解决

思路，希望对你在实际开发时有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是，针对我提到的微服务和

Serverless 等场景 Java 表现出的不足，有哪些方法可以改善 Java 的表现？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

https://github.com/cloudfoundry/java-buildpack-memory-calculator

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第29讲 | Java内存模型中的happen-before是什么？

下一篇 第31讲 | 你了解Java应用开发中的注入攻击吗？

东方
2018-07-24

 13

cpu问题

java 10之前： 手动设置jvm相关的选项，如：

 ParallelGCThreads …
展开

Harry陈祥
2019-02-14

 2

老师您好。对于java8+docker的场景，docker的cpu 内存配额是可能动态变化和伸缩

精选留言 (9)  写留言

的， docker启动之前，不知道会被分配多大内存多少cpu，这种情况，应该怎么处理参数
问题？
还有一个问题是：docker hub里面有java各个版本的镜像，这些镜像是否已经对文中提到
的问题都做了适配？我们在构建docker的时候，直接from java镜像，而不再设置java…
展开

sgl
2018-09-28

 2

没有一种技术是万能的，需要理解技术的优点和不足，才能使用好它

大卫李
2018-08-13

 2

MAXRAM这个参数好像是openjdk的，oracle jdk文档里没有找到

作者回复: 可以试验一下，我在外面不好翻文档，但应该oracle jdk是有的，openjdk可以说是

oracle jdk的子集

正是那朵玫...
2018-08-07

 2

目前容器只跑了java和consul的client进程，consul占的内存很小，java进程被kill掉后，
consul进程还在，我们的java进程被kill掉都是在没有流量进来的时候，不过您说的使用
swap区的我没有设置，不知道有没有什么影响？

展开

正是那朵玫...
2018-08-07

 1

老师好，再描述下我们的场景，我们在线上环境的参数是：xmx1g，永久带256m，
docker限制2.2g，其他并没有设置，我们也怀疑是不是堆外内存有问题，于是在准生产环
境修改了参数进行测试，设置了MaxRAM1g，堆外故意设小128m，然后进行测试，用
jconsole进行监控，我们观察到docker容器的内存不断飙升，只升不降，而jconsole监控
的却很正常，young gc很频繁，但是full gc一次没有，当docker内存接近设置的2.2g时…
展开

作者回复: 有排查其他进程吗？

卡斯瓦德
2018-07-14

 1

1.老师听说docker里面只能用open-jdk使用oracle-jdk是有法律风险的，现在还是这样
么？ 2.jdk8设置了-xmx值小于docker设定的值就好，我们使用了docker-compose貌似
这个只有设定内存使用上限，但是不超过这个值一般没问题，3.至于swap没有遇见过，能
能讲何时会出现么，好预警下。 4.说个docker遇到相关问题就是jdbc驱动，貌似
mysql5.14以前的驱动对docker不友好，如果select count（*） from table 这个值超过…
展开

作者回复: 1，法律问题我不知道不评价。个人建议看清事实，莫被人pr；2，是，出问题是极端情

况，大部分场景并不复杂；3，具体我只注意到有人反应问题，但没有细节；回到一些常见实践，

例如用G1，如果吞吐量不达标，通常调优堆大小设置为尽量大但又swap不发生，不然会影响吞吐

量；4，很感谢提供这个案例，了解具体问题吗

苦行僧
2019-02-05



目前在实际工作中还没有使用过docker

展开

作者回复: 嗯呢

正是那朵玫...
2018-08-06



老师，有个问题想咨询下，我们现在迁移到docker环境，使用的还是java7，您说的那些参
数我们都有设置，比如docker容器内存大小，最大堆内存，MaxRAM等，现在的问题是
java应用在docker上跑一段时间就会被kill掉，我们监控内存情况是docker容器内存使用几
乎被占满，但是jvm的内存使用却很正常，不知道为什么？老师能否指点下思路？

展开

作者回复: 容器内存限制，java xmx MaxDirectMemorySize之类都是多大？我们说过内存不只是

堆，还有一些在堆外，需要留点儿余地；kill的时间点附近有收集什么信息没有

