
第35讲 | JVM优化Java代码时都做了什么？
2018-07-26 杨晓峰 & 郑雨迪

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:07 大小 4.64M

我在专栏上一讲介绍了微基准测试和相关的注意事项，其核心就是避免 JVM 运行中对 Java

代码的优化导致失真。所以，系统地理解 Java 代码运行过程，有利于在实践中进行更进一

步的调优。

今天我要问你的问题是，JVM 优化 Java 代码时都做了什么？

与以往我来给出典型回答的方式不同，今天我邀请了隔壁专栏《深入拆解 Java 虚拟机》的

作者，同样是来自 Oracle 的郑雨迪博士，让他以 JVM 专家的身份去思考并回答这个问

题。

来自 JVM 专栏作者郑雨迪博士的回答





 下载APP 

http://time.geekbang.org/column/intro/108?utm_source=app&utm_medium=article&utm_campaign=108-presell&utm_content=java


JVM 在对代码执行的优化可分为运行时（runtime）优化和即时编译器（JIT）优化。运行

时优化主要是解释执行和动态编译通用的一些机制，比如说锁机制（如偏斜锁）、内存分配

机制（如 TLAB）等。除此之外，还有一些专门用于优化解释执行效率的，比如说模版解释

器、内联缓存（inline cache，用于优化虚方法调用的动态绑定）。

JVM 的即时编译器优化是指将热点代码以方法为单位转换成机器码，直接运行在底层硬件

之上。它采用了多种优化方式，包括静态编译器可以使用的如方法内联、逃逸分析，也包括

基于程序运行 profile 的投机性优化（speculative/optimistic optimization）。这个怎么

理解呢？比如我有一条 instanceof 指令，在编译之前的执行过程中，测试对象的类一直是

同一个，那么即时编译器可以假设编译之后的执行过程中还会是这一个类，并且根据这个类

直接返回 instanceof 的结果。如果出现了其他类，那么就抛弃这段编译后的机器码，并且

切换回解释执行。

当然，JVM 的优化方式仅仅作用在运行应用代码的时候。如果应用代码本身阻塞了，比如

说并发时等待另一线程的结果，这就不在 JVM 的优化范畴啦。

考点分析

感谢郑雨迪博士从 JVM 的角度给出的回答。今天这道面试题在专栏里有不少同学问我，也

是会在面试时被面试官刨根问底的一个知识点，郑博士的回答已经非常全面和深入啦。

大多数 Java 工程师并不是 JVM 工程师，知识点总归是要落地的，面试官很有可能会从实

践的角度探讨，例如，如何在生产实践中，与 JIT 等 JVM 模块进行交互，落实到如何真正

进行实际调优。

在今天这一讲，我会从 Java 工程师日常的角度出发，侧重于：

知识扩展

首先，我们从整体的角度来看看 Java 代码的整个生命周期，你可以参考我提供的示意图。 

从整体去了解 Java 代码编译、执行的过程，目的是对基本机制和流程有个直观的认识，

以保证能够理解调优选择背后的逻辑。

从生产系统调优的角度，谈谈将 JIT 的知识落实到实际工作中的可能思路。这里包括两部

分：如何收集 JIT 相关的信息，以及具体的调优手段。



我在专栏第 1 讲就已经提到过，Java 通过引入字节码这种中间表达方式，屏蔽了不同硬件

的差异，由 JVM 负责完成从字节码到机器码的转化。

通常所说的编译期，是指 javac 等编译器或者相关 API 等将源码转换成为字节码的过程，

这个阶段也会进行少量类似常量折叠之类的优化，只要利用反编译工具，就可以直接查看细

节。

javac 优化与 JVM 内部优化也存在关联，毕竟它负责了字节码的生成。例如，Java 9 中的

字符串拼接，会被 javac 替换成对 StringConcatFactory 的调用，进而为 JVM 进行字符串

拼接优化提供了统一的入口。在实际场景中，还可以通过不同的策略选项来干预这个过程。

今天我要讲的重点是JVM 运行时的优化，在通常情况下，编译器和解释器是共同起作用

的，具体流程可以参考下面的示意图。 

http://time.geekbang.org/column/article/6845
http://openjdk.java.net/jeps/280


JVM 会根据统计信息，动态决定什么方法被编译，什么方法解释执行，即使是已经编译过

的代码，也可能在不同的运行阶段不再是热点，JVM 有必要将这种代码从 Code Cache 中

移除出去，毕竟其大小是有限的。

就如郑博士所回答的，解释器和编译器也会进行一些通用优化，例如：

这么做的理由有很多，例如，不同体系结构的 CPU 在指令等层面存在着差异，定制才能充

分发挥出硬件的能力。我们日常使用的典型字符串操作、数组拷贝等基础方法，Hotspot

都提供了内建实现。

而即时编译器（JIT），则是更多优化工作的承担者。JIT 对 Java 编译的基本单元是整个方

法，通过对方法调用的计数统计，甄别出热点方法，编译为本地代码。另外一个优化场景，

则是最针对所谓热点循环代码，利用通常说的栈上替换技术（OSR，On-Stack

Replacement，更加细节请参考R 大的文章），如果方法本身的调用频度还不够编译标

准，但是内部有大的循环之类，则还是会有进一步优化的价值。

锁优化，你可以参考我在专栏第 16 讲提供的解释器运行时的源码分析。

Intrinsic 机制，或者叫作内建方法，就是针对特别重要的基础方法，JDK 团队直接提供

定制的实现，利用汇编或者编译器的中间表达方式编写，然后 JVM 会直接在运行时进行

替换。

https://github.com/AdoptOpenJDK/jitwatch/wiki/Understanding-the-On-Stack-Replacement-(OSR)-optimisation-in-the-HotSpot-C1-compiler
http://time.geekbang.org/column/article/9042


从理论上来看，JIT 可以看作就是基于两个计数器实现，方法计数器和回边计数器提供给

JVM 统计数据，以定位到热点代码。实际中的 JIT 机制要复杂得多，郑博士提到了逃逸分

析、循环展开、方法内联等，包括前面提到的 Intrinsic 等通用机制同样会在 JIT 阶段发

生。

第二，有哪些手段可以探查这些优化的具体发生情况呢？

专栏中已经陆陆续续介绍了一些，我来简单总结一下并补充部分细节。

JVM 会生成一个 xml 形式的文件，另外， LogFile 选项是可选的，不指定则会输出到

具体格式可以参考 Ben Evans 提供的JitWatch工具和分析指南。

打印编译发生的细节。

1 -XX:+PrintCompilation

复制代码

输出更多编译的细节。

1 -XX:UnlockDiagnosticVMOptions -XX:+LogCompilation -XX:LogFile=<your_file_path>

复制代码

1 hotspot_pid<pid>.log

复制代码

打印内联的发生，可利用下面的诊断选项，也需要明确解锁。

https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Loop_unrolling
https://github.com/AdoptOpenJDK/jitwatch/
http://www.oracle.com/technetwork/articles/java/architect-evans-pt1-2266278.html


很多工具都已经提供了具体的统计信息，比如，JMC、JConsole 之类，我也介绍过使用

NMT 监控其使用。

第三，我们作为应用开发者，有哪些可以触手可及的调优角度和手段呢？

我曾经介绍过 JIT 的默认门限，server 模式默认 10000 次，client 是 1500 次。门限大小

也存在着调优的可能，可以使用下面的参数调整；与此同时，该参数还可以变相起到降低预

热时间的作用。

很多人可能会产生疑问，既然是热点，不是早晚会达到门限次数吗？这个还真未必，因为

JVM 会周期性的对计数的数值进行衰减操作，导致调用计数器永远不能达到门限值，除了

可以利用 CompileThreshold 适当调整大小，还有一个办法就是关闭计数器衰减。

如果你是利用 debug 版本的 JDK，还可以利用下面的参数进行试验，但是生产版本是不支

持这个选项的。

1 -XX:+PrintInlining

复制代码

如何知晓 Code Cache 的使用状态呢？

调整热点代码门限值

1 -XX:CompileThreshold=N

复制代码

1 -XX:-UseCounterDecay

复制代码

1 -XX:CounterHalfLifeTime

复制代码



我们知道 JIT 编译的代码是存储在 Code Cache 中的，需要注意的是 Code Cache 是存在

大小限制的，而且不会动态调整。这意味着，如果 Code Cache 太小，可能只有一小部分

代码可以被 JIT 编译，其他的代码则没有选择，只能解释执行。所以，一个潜在的调优点就

是调整其大小限制。

当然，也可以调整其初始大小。

注意，在相对较新版本的 Java 中，由于分层编译（Tiered-Compilation）的存在，Code

Cache 的空间需求大大增加，其本身默认大小也被提高了。

JVM 的编译器线程数目与我们选择的模式有关，选择 client 模式默认只有一个编译线程，

而 server 模式则默认是两个，如果是当前最普遍的分层编译模式，则会根据 CPU 内核数

目计算 C1 和 C2 的数值，你可以通过下面的参数指定的编译线程数。

在强劲的多处理器环境中，增大编译线程数，可能更加充分的利用 CPU 资源，让预热等过

程更加快速；但是，反之也可能导致编译线程争抢过多资源，尤其是当系统非常繁忙时。例

调整 Code Cache 大小

1 -XX:ReservedCodeCacheSize=<SIZE>

复制代码

1 -XX:InitialCodeCacheSize=<SIZE>

复制代码

调整编译器线程数，或者选择适当的编译器模式

1 -XX:CICompilerCount=N

复制代码



如，系统部署了多个 Java 应用实例的时候，那么减小编译线程数目，则是可以考虑的。

生产实践中，也有人推荐在服务器上关闭分层编译，直接使用 server 编译器，虽然会导致

稍慢的预热速度，但是可能在特定工作负载上会有微小的吞吐量提高。

比如，减少进入安全点。严格说，它远远不只是发生在动态编译的时候，GC 阶段发生的更

加频繁，你可以利用下面选项诊断安全点的影响。

注意，在 JDK 9 之后，PrintGCApplicationStoppedTime 已经被移除了，你需要使用“-

Xlog:safepoint”之类方式来指定。

很多优化阶段都可能和安全点相关，例如：

主要的优化手段就介绍到这里，这些方法都是普通 Java 开发者就可以利用的。如果你想对

JVM 优化手段有更深入的了解，建议你订阅 JVM 专家郑雨迪博士的专栏。

一课一练

其他一些相对边界比较混淆的所谓“优化”

1 -XX:+PrintSafepointStatistics -XX:+PrintGCApplicationStoppedTime

复制代码

在 JIT 过程中，逆优化等场景会需要插入安全点。

常规的锁优化阶段也可能发生，比如，偏斜锁的设计目的是为了避免无竞争时的同步开

销，但是当真的发生竞争时，撤销偏斜锁会触发安全点，是很重的操作。所以，在并发场

景中偏斜锁的价值其实是被质疑的，经常会明确建议关闭偏斜锁。

1 -XX:-UseBiasedLocking

复制代码



关于今天我们讨论的题目你做到心中有数了吗？ 请思考一个问题，如何程序化验证 final 关

键字是否会影响性能？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

点击下方图片进入 JVM 专栏 

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第34讲 | 有人说“Lambda能让Java程序慢30倍”，你怎么看？

下一篇 周末福利 | 一份Java工程师必读书单

BY
2018-07-26

 6

精选留言 (10)  写留言

http://time.geekbang.org/column/intro/108?utm_source=app&utm_medium=article&utm_campaign=108-presell&utm_content=java


profile是啥意思。。。

展开

作者回复: 这个我也不知道翻译用什么词好，大家平时都这么交流...

茶底
2018-07-29

 1

老师下一期能不能加点模块化的东西啊

展开

Lynn
2019-05-09



code cache 既然不能动态调整大小 为什么还有初始大小这个参数

流光
2019-04-21



方法复用,调用次数多了就可以成为热点方法了,有这方面的意思吗

Geek_65a59...
2019-03-15



final对性能的影响看看字节码就知道了 
，也可以通过查看编译详情查看

armado
2019-03-04



这一讲真的难啊，基本没看懂。

展开

achenbj
2018-11-21



感觉去面试了才准备有点晚啊...



展开

XiaoYeGe
2018-09-07



好容易学到这儿了，几个月了，我是不是有点菜。现在才看到这儿。嗯嗯，我是很菜。杨
大神，后续考虑出一些视频课程吗？😂 🤓 🤓 🤓 🤓

展开

傑
2018-07-29



第二个图没有看太明白

展开

作者回复: Profile可以看作是jvm学习的过程，统计程序执行的特点，找到热点，然后编译执行，

最后是说仍然可能会发生逆优化

杨东yy
2018-07-27



老师，请问下，整个内容有ppt么，我这快整体总结下，在做思考，如果有的话，希望可以
提供下，可以节约我一些时间，感谢

展开

作者回复: 没有，你可以截取主干


