
第37讲 | 谈谈Spring Bean的生命周期和作用域？
2018-08-02 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 09:59 大小 4.58M

在企业应用软件开发中，Java 是毫无争议的主流语言，开放的 Java EE 规范和强大的开源

框架功不可没，其中 Spring 毫无疑问已经成为企业软件开发的事实标准之一。今天这一

讲，我将补充 Spring 相关的典型面试问题，并谈谈其部分设计细节。

今天我要问你的问题是，谈谈 Spring Bean 的生命周期和作用域？

典型回答

Spring Bean 生命周期比较复杂，可以分为创建和销毁两个过程。

首先，创建 Bean 会经过一系列的步骤，主要包括：





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程 
发数字“2”获取众筹列表



你可以参考下面示意图理解这个具体过程和先后顺序。 

实例化 Bean 对象。

设置 Bean 属性。

如果我们通过各种 Aware 接口声明了依赖关系，则会注入 Bean 对容器基础设施层面的

依赖。具体包括 BeanNameAware、BeanFactoryAware 和

ApplicationContextAware，分别会注入 Bean ID、Bean Factory 或者

ApplicationContext。

调用 BeanPostProcessor 的前置初始化方法 postProcessBeforeInitialization。

如果实现了 InitializingBean 接口，则会调用 afterPropertiesSet 方法。

调用 Bean 自身定义的 init 方法。

调用 BeanPostProcessor 的后置初始化方法 postProcessAfterInitialization。

创建过程完毕。



第二，Spring Bean 的销毁过程会依次调用 DisposableBean 的 destroy 方法和 Bean 自

身定制的 destroy 方法。

Spring Bean 有五个作用域，其中最基础的有下面两种：

从 Bean 的特点来看，Prototype 适合有状态的 Bean，而 Singleton 则更适合无状态的情

况。另外，使用 Prototype 作用域需要经过仔细思考，毕竟频繁创建和销毁 Bean 是有明

显开销的。

如果是 Web 容器，则支持另外三种作用域：

考点分析

今天我选取的是一个入门性质的高频 Spring 面试题目，我认为相比于记忆题目典型回答里

的细节步骤，理解和思考 Bean 生命周期所体现出来的 Spring 设计和机制更有意义。

你能看到，Bean 的生命周期是完全被容器所管理的，从属性设置到各种依赖关系，都是容

器负责注入，并进行各个阶段其他事宜的处理，Spring 容器为应用开发者定义了清晰的生

命周期沟通界面。

如果从具体 API 设计和使用技巧来看，还记得我在专栏第 13 讲提到过的 Marker

Interface 吗，Aware 接口就是个典型应用例子，Bean 可以实现各种不同 Aware 的子接

口，为容器以 Callback 形式注入依赖对象提供了统一入口。

言归正传，还是回到 Spring 的学习和面试。关于 Spring，也许一整本书都无法完整涵盖

其内容，专栏里我会有限地补充：

Singleton，这是 Spring 的默认作用域，也就是为每个 IOC 容器创建唯一的一个 Bean

实例。

Prototype，针对每个 getBean 请求，容器都会单独创建一个 Bean 实例。

Request，为每个 HTTP 请求创建单独的 Bean 实例。

Session，很显然 Bean 实例的作用域是 Session 范围。

GlobalSession，用于 Portlet 容器，因为每个 Portlet 有单独的 Session，

GlobalSession 提供一个全局性的 HTTP Session。
防止断

更 请务
必加 

首发微
信：1

71614
3665

http://time.geekbang.org/column/article/8471


知识扩展

首先，我们先来看看 Spring 的基础机制，至少你需要理解下面两个基本方面。

从 Bean 创建过程可以看到，它的依赖关系都是由容器负责注入，具体实现方式包括带参数

的构造函数、setter 方法或者AutoWired方式实现。

第二，Spring 到底是指什么？

我前面谈到的 Spring，其实是狭义的Spring Framework，其内部包含了依赖注入、事件

机制等核心模块，也包括事务、O/R Mapping 等功能组成的数据访问模块，以及 Spring

MVC 等 Web 框架和其他基础组件。

广义上的 Spring 已经成为了一个庞大的生态系统，例如：

Spring 的基础机制。

Spring 框架的涵盖范围。

Spring AOP 自身设计的一些细节，前面第 24 讲偏重于底层实现原理，这样还不够全

面，毕竟不管是动态代理还是字节码操纵，都还只是基础，更需要 Spring 层面对切面编

程的支持。

控制反转（Inversion of Control），或者也叫依赖注入（Dependency Injection），广

泛应用于 Spring 框架之中，可以有效地改善了模块之间的紧耦合问题。

AOP，我们已经在前面接触过这种切面编程机制，Spring 框架中的事务、安全、日志等

功能都依赖于 AOP 技术，下面我会进一步介绍。

Spring Boot，通过整合通用实践，更加自动、智能的依赖管理等，Spring Boot 提供了

各种典型应用领域的快速开发基础，所以它是以应用为中心的一个框架集合。

Spring Cloud，可以看作是在 Spring Boot 基础上发展出的更加高层次的框架，它提供

了构建分布式系统的通用模式，包含服务发现和服务注册、分布式配置管理、负载均衡、

分布式诊断等各种子系统，可以简化微服务系统的构建。

当然，还有针对特定领域的 Spring Security、Spring Data 等。

https://docs.spring.io/spring-framework/docs/5.0.3.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
https://github.com/spring-projects/spring-framework/blob/67ea4b3a050af3db5545f58ff85a0d132ee91c2a/spring-aop/src/main/java/org/aopalliance/aop/Advice.java
http://time.geekbang.org/column/article/10076


上面的介绍比较笼统，针对这么多内容，如果将目标定得太过宽泛，可能就迷失在 Spring

生态之中，我建议还是深入你当前使用的模块，如 Spring MVC。并且，从整体上把握主

要前沿框架（如 Spring Cloud）的应用范围和内部设计，至少要了解主要组件和具体用

途，毕竟如何构建微服务等，已经逐渐成为 Java 应用开发面试的热点之一。

第三，我们来探讨一下更多有关 Spring AOP 自身设计和实现的细节。

先问一下自己，我们为什么需要切面编程呢？

切面编程落实到软件工程其实是为了更好地模块化，而不仅仅是为了减少重复代码。通过

AOP 等机制，我们可以把横跨多个不同模块的代码抽离出来，让模块本身变得更加内聚，

进而业务开发者可以更加专注于业务逻辑本身。从迭代能力上来看，我们可以通过切面的方

式进行修改或者新增功能，这种能力不管是在问题诊断还是产品能力扩展中，都非常有用。

在之前的分析中，我们已经分析了 AOP Proxy 的实现原理，简单回顾一下，它底层是基于

JDK 动态代理或者 cglib 字节码操纵等技术，运行时动态生成被调用类型的子类等，并实例

化代理对象，实际的方法调用会被代理给相应的代理对象。但是，这并没有解释具体在

AOP 设计层面，什么是切面，如何定义切入点和切面行为呢？

Spring AOP 引入了其他几个关键概念：

Java 核心类库中同样存在类似代码，例如 Java 9 中引入的 Flow API 就是 Reactive

Stream 规范的最小子集，通过这种方式，可以保证不同产品直接的无缝沟通，促进了良好

实践的推广。

Aspect，通常叫作方面，它是跨不同 Java 类层面的横切性逻辑。在实现形式上，既可以

是 XML 文件中配置的普通类，也可以在类代码中用“@Aspect”注解去声明。在运行

时，Spring 框架会创建类似Advisor来指代它，其内部会包括切入的时机（Pointcut）

和切入的动作（Advice）。

Join Point，它是 Aspect 可以切入的特定点，在 Spring 里面只有方法可以作为 Join

Point。

Advice，它定义了切面中能够采取的动作。如果你去看 Spring 源码，就会发现

Advice、Join Point 并没有定义在 Spring 自己的命名空间里，这是因为他们是源自

AOP 联盟，可以看作是 Java 工程师在 AOP 层面沟通的通用规范。

https://github.com/spring-projects/spring-framework/blob/master/spring-aop/src/main/java/org/springframework/aop/Advisor.java
https://github.com/spring-projects/spring-framework/blob/67ea4b3a050af3db5545f58ff85a0d132ee91c2a/spring-aop/src/main/java/org/aopalliance/aop/Advice.java
http://aopalliance.sourceforge.net/


具体的 Spring Advice 结构请参考下面的示意图。 

其中，BeforeAdvice 和 AfterAdvice 包括它们的子接口是最简单的实现。而 Interceptor

则是所谓的拦截器，用于拦截住方法（也包括构造器）调用事件，进而采取相应动作，所以

Interceptor 是覆盖住整个方法调用过程的 Advice。通常将拦截器类型的 Advice 叫作

Around，在代码中可以使用“@Around”来标记，或者在配置中使

用“<aop:around>”。

如果从时序上来看，则可以参考下图，理解具体发生的时机。

你可以参看下面的示意图，来进一步理解上面这些抽象在逻辑上的意义。

Pointcut，它负责具体定义 Aspect 被应用在哪些 Join Point，可以通过指定具体的类名

和方法名来实现，或者也可以使用正则表达式来定义条件。

拼课微
信：1

71614
3665



在准备面试时，如果在实践中使用过 AOP 是最好的，否则你可以选择一个典型的 AOP 实

例，理解具体的实现语法细节，因为在面试考察中也许会问到这些技术细节。

如果你有兴趣深入内部，最好可以结合 Bean 生命周期，理解 Spring 如何解析 AOP 相关

的注解或者配置项，何时何地使用到动态代理等机制。为了避免被庞杂的源码弄晕，我建议

你可以从比较精简的测试用例作为一个切入点，如CglibProxyTests。

另外，Spring 框架本身功能点非常多，AOP 并不是它所支持的唯一切面技术，它只能利用

动态代理进行运行时编织，而不能进行编译期的静态编织或者类加载期编织。例如，在

Java 平台上，我们可以使用 Java Agent 技术，在类加载过程中对字节码进行操纵，比如

修改或者替换方法实现等。在 Spring 体系中，如何做到类似功能呢？你可以使用

AspectJ，它具有更加全面的能力，当然使用也更加复杂。

Join Point 仅仅是可利用的机会。

Pointcut 是解决了切面编程中的 Where 问题，让程序可以知道哪些机会点可以应用某

个切面动作。

而 Advice 则是明确了切面编程中的 What，也就是做什么；同时通过指定 Before、

After 或者 Around，定义了 When，也就是什么时候做。

https://github.com/spring-projects/spring-framework/blob/da80502ea6ed4860f5bf7b668300644cdfe3bb5a/spring-context/src/test/java/org/springframework/aop/framework/CglibProxyTests.java


今天我从一个常见的 Spring 面试题开始，浅谈了 Spring 的基础机制，探讨了 Spring 生

态范围，并且补充分析了部分 AOP 的设计细节，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是，请介绍一下 Spring 声明

式事务的实现机制，可以考虑将具体过程画图。

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第36讲 | 谈谈MySQL支持的事务隔离级别，以及悲观锁和乐观锁的原理和应用场景？

下一篇 第38讲 | 对比Java标准NIO类库，你知道Netty是如何实现更高性能的吗？



代码狂徒
2018-08-24

 47

感觉本篇文章跑题了呢，关于生命周期，只讨论了初始化过程和销毁过程，那么什么时候
引发的初始化呢？什么时候触发销毁操作呢？spring容器管理的bean是在容器运行过程中
不会被销毁吧？

Meteor
2018-08-05

 14

Spring容器初始化开始: 
1.[BeanFactoryPostProcessor]接口实现类的构造器2.[BeanFactoryPostProcessor]的
postProcessorBeanFactory方法 
3.[BeanPostProcessor]接口实现类的构造器 
4.[InstantiationAwareBeanPostProcessorAdapter]构造器 …
展开

爪哇夜未眠
2018-08-02

 9

Advice 的时序图的before,after画反了吗

展开

coco
2019-01-09

 8

@代码狂徒 
感觉本篇文章跑题了呢，关于生命周期，只讨论了初始化过程和销毁过程，那么什么时候
引发的初始化呢？什么时候触发销毁操作呢？spring容器管理的bean是在容器运行过程中
不会被销毁吧？ 
 …
展开

作者回复: 谢谢反馈，每篇有3K左右的限制，有些细节就不面面俱到了，尽量让有限的内容起到抛

砖引玉的作用

精选留言 (19)  写留言



铁拳阿牛
2018-08-02

 4

可以按照课程丢些demo到一个github项目里，配合章节理论，这样有理论有代码可能对
课程，和对学员更有帮助！不过对老师的成本也提高了。

展开

null
2018-08-02

 4

老师，IOC 为什么可以实现解耦吖？ 
 
在引入 IOC 容器之前，对象 A 依赖于对象 B，则需要 A 主动去创建对象 B，控制权都在
A。 
 …
展开

作者回复: IOC容器负责打理这些事情。同样的依赖关系，一个是a自己负责，一个是ioc容器负

责，相当于ab之间的直接联系，变成了间接的。再配合OO，更换实现只需要修改配置

虞飞
2018-08-06

 3

声明式事务其实说白了是一种特殊的aop应用，它其实包括两种advice，一种是around，
另外一种是after-throwing。利用around advice在方法执行前，先关闭数据库的自动提交
功能，然后设定一个标志符。根据业务代码实际的情况，对标志符赋不同的值，如果数据
更新成功赋true，否则false。在业务方法执行完之后的部分对标志符进行处理。如为
true，则提交数据库操作，否则就进行回滚。 …
展开

汉斯·冯·...
2018-08-03

 2

想不到博主对spring也有深入了解。声明式事务是通过beanPostProcessor来实现的，
springioc会用beanPostProcessor的某个方法（具体方法名忘记了，这里假设为方法A）
返回结果作为getBean的结果。所以spring的事务模块在方法A中，用代理的方式，在目标
方法前后加入一些与事务有关的代码，方法A的返回值就是这个代理类。欢迎拍砖！

展开



作者回复: 喜欢读读源码而已，不敢说有多深入，因为实际踩坑经验不足；补充本文是因为虽然已

经36篇，但是Java开发者不会只用Java se自身，开源项目必不可少

yao_jn
2018-08-02

 2

读老师的文章收益很大，希望老师再对框架多讲一些，还有底层原理，毕竟很多时候看源
码很费力，提点下会好很多！

展开

作者回复: 坦白说，真的要提高还是要靠自己，建议你看看别人的思路而不只是他的观点，源码就

和上学读英文一样，看多了就不犯困，尽量让自己有输出

arebya
2018-12-26

 1

加上jdk本身的@PostConstruct 和@PreDestroy分析整个生命周期会更好

孟老师
2018-11-03

 1

一直没明白为什么spring和springMVC有父子容器的关系？这么设计的目的是什么？求老
师解答

白
2018-09-12

 1

拜读第二遍。

展开

李峰
2018-08-20

 1

能否分享下你看spring源码的技巧，和方法，我也读了一些其他的源码，感觉spring太全
复杂度就很高，看着看着就迷失了



展开

作者回复: 个人的建议： 

明确目的、目标，尽量让自己有个清晰的体系； 

如果有实际任务驱动更好，毕竟大多数情况是随便看看，没有收获感，也就浅尝辄止了； 

有输出，能表达出来，才好验证

李峰
2018-08-20

 1

老师，请教下，因为我也读了几次spring的源码，相比其他我读过的源码个人觉得spring
复杂度很复杂，很多细节看着看着就迷失在他的代码里面了能否分享下你看spring源码的
方法，感谢

作者回复: 已回复

涛哥迷妹
2018-08-07

 1

这么给力多讲了老师一共多少讲啊

展开

sars
2018-08-02

 1

能否介绍一下热加载，还有目前第三方软件，class，jar都可以热加载。

static
2018-11-23



老师好，在学习spring的过程中我遇到了一个ioc的一个疑问，刚好看到老师这篇文章又想
起之前没有解决的疑惑，希望老师可以帮我解惑，感谢！背景：在ioc容器refresh方法的末
尾会初始化所有单例bean，之后会在实例化bean之前先寻找bean的所有依赖bean并循环
对依赖的bean调用getBean方法。问题：如果此时依赖的bean是原型的作用域，是否此时
的getBean此原型bean是没有用浪费时间的一个过程呢？在我目前的理解感觉如果bean…
展开



XiaoYeGe
2018-11-20



第一次写留言, 看了几个月了,中间有些篇幅关于JVM的介绍,建议去看<<深入理解Java虚拟
机>>这本书, 讲的不错, 当然博主总结的也好. 总之, 谢谢博主

展开

作者回复: 的确是经典书籍，书比专栏要更系统、全面

GL
2018-08-03



漏了BeanFactoryPostProcessor，在BeanPostProcessor前执行

作者回复: 哦，我再翻翻代码看看




