
第39讲 | 谈谈常用的分布式ID的设计方案？Snowflake是否受冬令
时切换影响？
2018-08-07 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 10:03 大小 4.60M

专栏的绝大部分主题都侧重于 Java 语言和虚拟机，基本都是单机模式下的问题，今天我会

补充一个分布式相关的问题。严格来说，分布式并不算是 Java 领域，而是一个单独的大主

题，但确实也会在 Java 技术岗位面试中被涉及。在准备面试时，如果有丰富的分布式系统

经验当然好；如果没有，你可以选择典型问题和基础技术进行适当准备。关于分布式，我自

身的实战经验也非常有限，专栏里就谈谈从理论出发的一些思考。

今天我要问你的问题是，谈谈常用的分布式 ID 的设计方案？Snowflake 是否受冬令时切换

影响？

典型回答





 下载APP 



首先，我们需要明确通常的分布式 ID 定义，基本的要求包括：

目前业界的方案很多，典型方案包括：

整体长度通常是 64 （1 + 41 + 10+ 12 = 64）位，适合使用 Java 语言中的 long 类型来

存储。

头部是 1 位的正负标识位。

紧跟着的高位部分包含 41 位时间戳，通常使用 System.currentTimeMillis()。

后面是 10 位的 WorkerID，标准定义是 5 位数据中心 + 5 位机器 ID，组成了机器编号，

以区分不同的集群节点。

最后的 12 位就是单位毫秒内可生成的序列号数目的理论极限。

Snowflake 的官方版本是基于 Scala 语言，Java 等其他语言的参考实现有很多，是一种非

常简单实用的方式，具体位数的定义是可以根据分布式系统的真实场景进行修改的，并不一

全局唯一，区别于单点系统的唯一，全局是要求分布式系统内唯一。

有序性，通常都需要保证生成的 ID 是有序递增的。例如，在数据库存储等场景中，有序

ID 便于确定数据位置，往往更加高效。

基于数据库自增序列的实现。这种方式优缺点都非常明显，好处是简单易用，但是在扩展

性和可靠性等方面存在局限性。

基于 Twitter 早期开源的Snowflake的实现，以及相关改动方案。这是目前应用相对比较

广泛的一种方式，其结构定义你可以参考下面的示意图。

https://github.com/twitter/snowflake
https://github.com/relops/snowflake
https://github.com/twitter/snowflake


定要严格按照示意图中的设计。

关于第二个问题，Snowflake 是否受冬令时切换影响？

我认为没有影响，你可以从 Snowflake 的具体算法实现寻找答案。我们知道 Snowflake 算

法的 Java 实现，大都是依赖于 System.currentTimeMillis()，这个数值代表什么呢？从

Javadoc 可以看出，它是返回当前时间和 1970 年 1 月 1 号 UTC 时间相差的毫秒数，这个

数值与夏 / 冬令时并没有关系，所以并不受其影响。

考点分析

今天的问题不仅源自面试的热门考点，并且也存在着广泛的应用场景，我前面给出的回答只

是一个比较精简的典型方案介绍。我建议你针对特定的方案进行深入分析，以保证在面试官

可能会深入追问时能有充分准备；如果恰好在现有系统使用分布式 ID，理解其设计细节是

很有必要的。

涉及分布式，很多单机模式下的简单问题突然就变得复杂了，这是分布式天然的复杂性，需

要从不同角度去理解适用场景、架构和细节算法，我会从下面的角度进行适当解读：

知识扩展

Redis、Zookeeper、MongoDB 等中间件，也都有各种唯一 ID 解决方案。其中一些设

计也可以算作是 Snowflake 方案的变种。例如，MongoDB 的ObjectId提供了一个 12

byte（96 位）的 ID 定义，其中 32 位用于记录以秒为单位的时间，机器 ID 则为 24

位，16 位用作进程 ID，24 位随机起始的计数序列。

国内的一些大厂开源了其自身的部分分布式 ID 实现，InfoQ 就曾经介绍过微信的

seqsvr，它采取了相对复杂的两层架构，并根据社交应用的数据特点进行了针对性设

计，具体请参考相关代码实现。另外，百度、美团等也都有开源或者分享了不同的分布式

ID 实现，都可以进行参考。

我们的业务到底需要什么样的分布式 ID，除了唯一和有序，还有哪些必须要考虑的要

素？

在实际场景中，针对典型的方案，有哪些可能的局限性或者问题，可以采取什么办法解决

呢？

http://mongodb.github.io/node-mongodb-native/2.0/tutorials/objectid/
http://www.infoq.com/cn/articles/wechat-serial-number-generator-architecture
https://github.com/nebula-im/seqsvr
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md


如果试图深入回答这个问题，首先需要明确业务场景的需求要点，我们到底需要一个什么样

的分布式 ID？

除了唯一和有序，考虑到分布式系统的功能需要，通常还会额外希望分布式 ID 保证：

在具体的生产环境中，还有可能提出对 QPS 等方面的具体要求，尤其是在国内一线互联网

公司的业务规模下，更是需要考虑峰值业务场景的数量级层次需求。

第二，主流方案的优缺点分析。

对于数据库自增方案，除了实现简单，它生成的 ID 还能够保证固定步长的递增，使用很方

便。

但是，因为每获取一个 ID 就会触发数据库的写请求，是一个代价高昂的操作，构建高扩展

性、高性能解决方案比较复杂，性能上限明显，更不要谈扩容等场景的难度了。与此同时，

保证数据库方案的高可用性也存在挑战，数据库可能发生宕机，即使采取主从热备等各种措

施，也可能出现 ID 重复等问题。

实际大厂商往往是构建了多层的复合架构，例如美团公开的数据库方案Leaf-Segment，引

入了起到缓存等作用的 Leaf 层，对数据库操作则是通过数据库中间件提供的批量操作，这

样既能保证性能、扩展性，也能保证高可用。但是，这种方案对基础架构层面的要求很多，

未必适合普通业务规模的需求。

与其相比，Snowflake 方案的好处是算法简单，依赖也非常少，生成的序列可预测，性能

也非常好，比如 Twitter 的峰值超过 10 万 /s。

有意义，或者说包含更多信息，例如时间、业务等信息。这一点和有序性要求存在一定关

联，如果 ID 中包含时间，本身就能保证一定程度的有序，虽然并不能绝对保证。ID 中包

含额外信息，在分布式数据存储等场合中，有助于进一步优化数据访问的效率。

高可用性，这是分布式系统的必然要求。前面谈到的方案中，有的是真正意义上的分布

式，有得还是传统主从的思路，这一点没有绝对的对错，取决于我们业务对扩展性、性能

等方面的要求。

紧凑性，ID 的大小可能受到实际应用的制约，例如数据库存储往往对长 ID 不友好，太长

的 ID 会降低 MySQL 等数据库索引的性能；编程语言在处理时也可能受数据类型长度限

制。

https://tech.meituan.com/MT_Leaf.html


但是，它也存在一定的不足，例如：

针对这一点，Twitter 曾经在文档中建议开启NTP，毕竟 Snowflake 对时间存在依赖，但

是也有人提议关闭 NTP。我个人认为还是应该开启 NTP，只是可以考虑将 stepback 设置

为 0，以禁止回调。

从设计和具体编码的角度，还有一个很有效的措施就是缓存历史时间戳，然后在序列生成之

前进行检验，如果出现当前时间落后于历史时间的不合理情况，可以采取相应的动作，要么

重试、等待时钟重新一致，或者就直接提示服务不可用。

如果更加深入到时钟和分布式系统时序的问题，还有与分布式 ID 相关但又有所区别的问

题，比如在分布式系统中，不同机器的时间很可能是不一致的，如何保证事件的有序性？

Lamport 在 1978 年的论文（Time, Clocks, and the Ording of Events in a Distributed

System）中就有很深入的阐述，有兴趣的同学可以去查找相应的翻译和解读。

最后，我再补充一些当前分布式领域的面试热点，例如：

时钟偏斜问题（Clock Skew）。我们知道普通的计算机系统时钟并不能保证长久的一致

性，可能发生时钟回拨等问题，这就会导致时间戳不准确，进而产生重复 ID。

另外，序列号的可预测性是把双刃剑，虽然简化了一些工程问题，但很多业务场景并不适

合可预测的 ID。如果你用它作为安全令牌之类，则是非常危险的，很容易被黑客猜测并

利用。

ID 设计阶段需要谨慎考虑暴露出的信息。例如，Erlang 版本的 flake 实现基于 MAC 地

址计算 WorkerID，在安全敏感的领域往往是不可以这样使用的。

从理论上来说，类似 Snowflake 的方案由于时间数据位数的限制，存在与2038 年问题

相似的理论极限。虽然目前的系统设计考虑数十年后的问题还太早，但是理解这些可能的

极限是有必要的，也许会成为面试的过程中的考察点。

分布式事务，包括其产生原因、业务背景、主流的解决方案等。

理解CAP、BASE等理论，懂得从最终一致性等角度来思考问题，理解Paxos、Raft等一

致性算法。

理解典型的分布式锁实现，例如最常见的Redis 分布式锁。

负载均衡等分布式领域的典型算法，至少要了解主要方案的原理。

http://doc.ntp.org/4.1.0/ntpd.htm
https://amturing.acm.org/p558-lamport.pdf
https://github.com/boundary/flake
https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://raft.github.io/
https://redis.io/topics/distlock


这些方面目前都已经有相对比较深入的分析，尤其是来自于一线大厂的实践经验。另外，在

左耳听风专栏的“程序员练级攻略”里，提供了非常全面的分布式学习资料，感兴趣的同学

可以参考。

今天我简要梳理了当前典型的分布式 ID 生成方案，并探讨了 ID 设计的一些考量，尤其是

应用相对广泛的 Snowflake 的不足之处，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？今天的思考题是，从理论上来看，

Snowflake 这种基于时间的算法，从形式上天然地限制了 ID 的并发生成数量，如果在极端

情况下，短时间需要更多 ID，有什么办法解决呢？

请你在留言区写写你对这个问题的思考，我会选出经过认真思考的留言，送给你一份学习奖

励礼券，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

http://time.geekbang.org/column/48


上一篇 第38讲 | 对比Java标准NIO类库，你知道Netty是如何实现更高性能的吗？

下一篇 结束语 | 技术没有终点

董朱明
2018-08-10

 23

69年的极限问题不难解决，timestamp减个常量就可以了，对于已生成的历史id，可以导
表刷id，当然，这里涉及到个数据库设计原则，系统之间传递数据不应使用物理主键，这
样刷id 就容易了

作者回复: 高手

卡特
2018-09-12

 5

因为snowflake的可预测性，可以提前生成好放到队列里，获取的时候直接获取。相当于做
了一层缓存； 
理论上可以解决短时间大量获取id的需求；

黄琨
2018-08-07

 5

缩减workID长度，增加序列号长度

影子
2019-01-24

 2

生成32位的自增长Id(int)老师有什么思路嘛

RoverYe
2018-09-15

 2

我们这边利用zk的唯一id特性

精选留言 (13)  写留言



袁伟
2018-08-08

 2

一直有个疑问就是Snowflake 文中说的极限问题，目前确定它只能用69年，大家都用数据
库的数字类型来存储，那么到了69年之后，后来人怎么处理，也许那个时候有更大数字来
表示。但我还是想不出更合理的方式，也许我想多了，这个问题交给69年后的人来考虑，
但我也想知道老师您是如何思考这个问题的

展开

XiaoYeGe
2018-11-30

 1

前后历时半年多 终于看完了, 下面就是再回头巩固一遍!

安小依
2018-08-08

 1

老师自己有没有计划，针对分布式单独出一个专栏，一直以来自己都想研究分布式，但是
很多问题依旧搞不懂: zookeeper 选举过程、hdfs 存储出现故障namenode是怎么处理、
MapReduce 作业调度问题需要做哪些权衡，不同异常下应该怎么解决，是忽略错误，还
是直接退出…各个方案背后是什么样的利弊在协调着这些…

展开

作者回复: 术业有专攻，有特定专家出专栏

吴科🍀
2018-12-29



我们通常用UUID或者数据自增主键，这样的方式效率都不高。snowflake分布式全局生成
的ID，效率高，设计优雅。

airong
2018-12-28



请问大牛10集群编号怎么获取的啊

Yang.🍭
2018-09-06





使用System.currentTimeMillis的话不是存在时钟回拨问题么，能不能从网络获取时间，
去生成这个😂😂

涛哥
2018-08-07



能讲下下时钟偏斜和时钟回拨吗，不是理解

有铭
2018-08-07



为啥最后一段是12的长度而不是别的数

作者回复: 我提到了，各部分不是固定的，看业务需求，例如，集群小，位数可以设计短点儿，

seq就可以更多位，时间也未必非要41位


