[bookmark: 数组和排序算法的应用-面试题]数组和排序算法的应用 + 面试题
[bookmark: 数组的定义与使用]数组的定义与使用
数组是 Java 编程中最重要的数据结构之一，也是最基本的数据结构，Java 中的常用集合 ArrayList、HashMap 等内部的实现都使用到了数组结构。数组是只能用来存储一种类型的集合，可以通过下标访问数值中的所有元素。
数组的声明方式有以下两种，如整数型数组，请参考下面代码：
· 方式一：int[] arr;
· 方式二：int arr[];
大部分情况下，我们会使用第一种方式 int[] arr; 来声明数组。
数组初始化
数组可使用 new int[n] 进行初始化，每个元素初始化为 0，声明了 n 个元素。也可以直接赋值，例如 new int[]{ 1,2,3…… }，具体用法可参照下面代码：
// 初始化方式一
int[] arr = new int[5];
// 初始化方式二
int[] arr2 = new int[]{1, 2, 3, 4, 5};
// 初始化方式二的延伸版，可省略 new int[] 直接赋值
int[] arr3 = {1, 2, 3, 4, 5};
注意 ：在 Java 中，数组初始化如果声明了数组长度，则不能直接赋值。例如，int[] arr = new int[5]{1, 2, 3, 4, 5}; 给这段初始化数组长度并赋值时，编译器会报错，编译不通过。
[bookmark: 数组遍历]数组遍历
数组遍历的常见方式有三种：传统的 for 循环、for each 遍历、还有 JDK 8 中新增的 Lambda 表达式。具体的实现请参考以下实例。
方式一：传统 for 循环
Integer[] arr = {2, 3, 6, 7, 9};
// 方式一：传统 for
for (int i = 0; i < arr.length; i++) {
  System.out.println(arr[i]);
}
方式二：for each
Integer[] arr = {2, 3, 6, 7, 9};
// 方式二：for each
for (int i : arr) {
  System.out.println(i);
}
方式三：JDK 8 中的 Lambda 表达式
Integer[] arr = {2, 3, 6, 7, 9};
// 方式三：jdk 8 Lambda
Arrays.asList(arr).forEach(x -> System.out.println(x));
其中 for each 的方式，写法更简洁，也更不容易出错，不必为数组的越界而担心（大于元素的最大下标值）。
注意 ：数组的访问是从 0 开始，而不是 1 开始，也就是第一个元素的获取是 arr[0]，而非 arr[1]。
[bookmark: 数组拷贝]数组拷贝
数组拷贝使用的是 Arrays.copyof() 方法，具体实现请参考下面代码：
int[] arr = {3, 4, 9};
int[] arr2 = Arrays.copyOf(arr, arr.length);
System.out.println(Arrays.toString(arr2));
程序执行结果：[3, 4, 9]
注意 ：Arrays.copyOf(array,newLength) 第二个参数 newLength 表示声明此数组的长度，可以比拷贝的数组的长度长，多出来的元素会初始化为 0 值。
[bookmark: 数组填充与合并]数组填充与合并
[bookmark: 数组填充]数组填充
即为每个元素统一赋值，使用 Arrays.fill() 进行数组填充，具体实现请参考下面代码：
int[] arr = new int[10];
Arrays.fill(arr, 6);
System.out.println(Arrays.toString(arr));
程序执行结果：[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
注意 ：使用 Arrays.fill() 会覆盖原有的值，即使数组之前有赋值操作，也会被覆盖。
[bookmark: 数组合并]数组合并
使用 org.apache.commons.lang3.ArrayUtils.addAll() 方法，具体实现请参考下面代码：
int[] arr = {2, 8, 13, 11, 6, 7};
int[] arr2 = {66, 88};
// 合并数组
int[] arr3 = org.apache.commons.lang3.ArrayUtils.addAll(arr, arr2);
System.out.println(Arrays.toString(arr3));
程序执行结果：[2, 8, 13, 11, 6, 7, 66, 88]
[bookmark: 排序与算法]排序与算法
[bookmark: 数组排序]数组排序
使用 Arrays.sort() 方法，具体实现请参考下面代码：
int[] arr = {2, 8, 13, 11, 6, 7};
Arrays.sort(arr);
System.out.println(Arrays.toString(arr));
程序执行结果：[2, 6, 7, 8, 11, 13]
[bookmark: 数组逆序]数组逆序
使用 org.apache.commons.lang3.ArrayUtils.reverse(arr) 方法，具体实现请参考下面代码：
int[] arr = {2, 8, 13, 11, 6, 7};
int[] arr = {2, 8, 13, 11, 6, 7};
// 数组正序（排序）
Arrays.sort(arr);
// 数组逆序
org.apache.commons.lang3.ArrayUtils.reverse(arr);
System.out.println(Arrays.toString(arr));
程序执行结果：[13, 11, 8, 7, 6, 2]
注意 ：org.apache.commons.lang3.ArrayUtils.reverse() 是数组逆序，并不是数组倒序，也就是说 ArrayUtils.reverse() 只会把数组原顺序颠倒输出，并不会自然排序后再倒序输出。
[bookmark: 冒泡排序]冒泡排序
依次比较相邻的两个数，把较大的值放后面，执行整个循环之后，数组就从小到大进行排列了。具体实现请参考下面代码：
int[] arr = {2, 8, 13, 11, 6, 7};
System.out.println("排序前：" + Arrays.toString(arr));
for (int i = 0; i < arr.length; i++) {
    // 因为冒泡是把每轮循环中较大的数飘到后面，所以是 arr.length-i-1
    for (int j = 0; j < arr.length - i - 1; j++) {
        if (arr[j] > arr[j + 1]) {
            // 元素交换
            int temp = arr[j + 1];
            arr[j + 1] = arr[j];
            arr[j] = temp;
        }
    }
}
System.out.println("排序后：" + Arrays.toString(arr));
程序执行结果：
排序前：[2, 8, 13, 11, 6, 7]
排序后：[2, 6, 7, 8, 11, 13]
[bookmark: 选择排序]选择排序
每次从待排序的数据元素中选出最小（或最大）的一个元素，顺序放在已排好序的数列的最后，直到全部待排序的数据元素排完。具体实现请参考下面代码：
int[] arr = {2, 8, 13, 11, 6, 7};
System.out.println("排序前：" + Arrays.toString(arr));
for (int i = 0; i < arr.length; i++) {
  int lowerIndex = i;
  for (int j = i + 1; j < arr.length; j++) {
    // 找出最小的一个索引
    if (arr[j] < arr[lowerIndex]) {
      lowerIndex = j;
    }
  }
  // 交换
  int temp = arr[i];
  arr[i] = arr[lowerIndex];
  arr[lowerIndex] = temp;
}
System.out.println("排序后：" + Arrays.toString(arr));
程序执行结果：
排序前：[2, 8, 13, 11, 6, 7]
排序后：[2, 6, 7, 8, 11, 13]
关于更多的排序算法，后面会有专门的章节进行介绍。
[bookmark: 元素查找]元素查找
查找数组是否包含某个值，使用 Arrays.binarySearch() 方法查询。 Arrays.binarySearch() 是利用二分法查询某个值，如果查到包含某值会返回该值的下标，如果没有查到则返回负值。
int[] arr = {1, 3, 4, 5};
// Arrays.binarySearch() 使用二分法查询某值
int index = Arrays.binarySearch(arr, 5);
System.out.println(index);
注意 ：使用 Arrays.binarySearch 之前一定要先调用 Arrays.sort() 对数组进行排序，否则返回的结果有误。
[bookmark: 多维数组]多维数组
我们之前使用的数组可以称之为一维数组，而多维数组可以理解为数组的数组，可以用二维数组来举例，二维数组也是一种特殊的多维数组。
比如我们声明一个二维数组：int[][] arr = new int[2][4];
这就相当于我们创建了一个两行四列的表，它的使用、赋值与取值，请查看下面代码示例：
// 声明二维数组
int[][] arr = new int[2][4];
//循环二维数组
for (int i = 0; i < arr.length; i++) {
    for (int j = 0; j < arr[0].length; j++) {
        // 二维数组赋值
        arr[i][j] = j;
    }
}
// 二维数组取值
System.out.println(arr[0][1]);
// 打印二维数组
System.out.println(Arrays.toString(arr[0]));
System.out.println(Arrays.toString(arr[1]));
以上程序执行的结果是：
1
[0, 1, 2, 3]
[0, 1, 2, 3]
[bookmark: 数组类型转换]数组类型转换
[bookmark: 字符串转数组]字符串转数组
使用 split 分隔字符串就形成了数组，请参考以下代码：
String str = "laowang,stone,wanglei";
String[] arr = str.split(","); // 字符串转数组
System.out.println(arr[0]);
[bookmark: 数组转字符串]数组转字符串
使用 Arrays.toString() 方法，请参考以下代码：
String[] arr = {"laowang", "stone", "wanglei"};
String str = Arrays.toString(arr);
System.out.println(str);
若要查看更多数组转字符串的方式，请查看本文面试部分的介绍。
[bookmark: 数组转集合]数组转集合
使用 Arrays.asList() 方法，请参考以下代码：
String[] strArr = {"cat", "dog"};
List list = Arrays.asList(strArr);
System.out.println(list);
[bookmark: 集合转数组]集合转数组
使用 List.toArrray() 方法，请参考以下代码：
List<String> list = new ArrayList<String>();
list.add("cat");
list.add("dog");
// 集合转换为数组
String[] arr = list.toArray(new String[list.size()]);
System.out.println(Arrays.toString(arr));
[bookmark: 相关面试题]相关面试题
[bookmark: 数组和集合有什么区别]1. 数组和集合有什么区别？
答：数组和集合的区别如下：
· 集合可以存储任意类型的对象数据，数组只能存储同一种数据类型的数据；
· 集合的长度是会发生变化的，数组的长度是固定的；
· 集合相比数组功能更强大，数组相比集合效率更高。
[bookmark: 以下代码访问数组元素打印的结果是多少]2. 以下代码访问数组元素打印的结果是多少？
int[] arr = new int[5] {1, 2, 3, 4, 5};
System.out.println(arr[4]);
答：程序编译报错，在 Java 中初始化数组时，如果直接给数组赋值，不能声明数组长度；如果声明了数组长度，则不能赋值给数组，否则编译器报错。
正确的写法如下：
int[] arr = new int[]{1, 2, 3, 4, 5};
System.out.println(arr[4]);
输出的结果为：5，访问元素从 0 开始。
[bookmark: 执行以下代码会输出什么结果]3. 执行以下代码会输出什么结果？
public static void main(String[] args) {
    int[] arr = {2, 3, 4, 8};
    change(arr);
    System.out.println(arr[2]);
}
private static void change(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        if (i % 2 == 0) {
            arr[i] *= i;
        }
    }
}
答：输出的结果是 8。
题目解析：在 Java 中数组本质是引用类型，因此在调用方法中修改数组，就是对原数组本身的修改。
[bookmark: 以下程序打印的结果是多少]4. 以下程序打印的结果是多少？
int[] intArr = new int[3];
String[] StrArr = new String[3];
System.out.println(intArr[1]);
System.out.println(StrArr[1]);
答：以上程序打印的结果是：0 和 null。
题目解析：new int[3] 相当于声明了数组的长度为 3，每个元素初始化为 0，而 new String[3] 相当于声明了数组的长度为 3，每个元素初始化为 null。
[bookmark: 数组转换字符串有哪些方式]5. 数组转换字符串有哪些方式？
答：数组转换字符串，有以下几种方式。
方式一：遍历拼接，完整代码如下：
String[] arr = {"laowang", "stone", "wanglei"};
StringBuffer sb = new StringBuffer();
for (int i = 0; i < arr.length; i++) {
    sb.append(arr[i]);
    if (i != arr.length - 1)
        sb.append(",");
}
System.out.println(sb.toString());
方式二：Arrays.toString() 转换，完整代码如下：
String[] arr = {"laowang", "stone", "wanglei"};
String str2 = Arrays.toString(arr);
System.out.println(str2);
方式三：StringUtils.join() 转换，完整代码如下：
String[] arr = {"laowang", "stone", "wanglei"};
String str3 = StringUtils.join(Arrays.asList(arr), ","); // 使用英文逗号分隔
System.out.println(str3);
[bookmark: 数组遍历有哪几种方式]6. 数组遍历有哪几种方式？
答：常见的数组遍历有以下三种方式。
· 传统 for 循环，如 for (int i = 0; i < arr.length; i++) { //…… }
· for each 循环，如 for (int i : arr) { //…… }
· jdk 8 Lambda 方式，如 Integer[] arr = {2, 3, 6, 7, 9}; Arrays._asList_(arr).forEach(x -> System._out_.println(x));
[bookmark: 以下数组比较的结果分别是什么]7. 以下数组比较的结果分别是什么？
String[] strArr = {"dog", "cat", "pig", "bird"};
String[] strArr2 = {"dog", "cat", "pig", "bird"};
System.out.println(Arrays.equals(strArr, strArr2));
System.out.println(strArr.equals(strArr2));
System.out.println(strArr == strArr2);
答：上面代码执行的结果，分别为：true、false、false。
题目解析：strArr == strArr2 为引用比较，因此结果一定是 false，而数组本身的比较也就是 strArr.equals(strArr2) 为 false 的原因是因为数组没有重写 equals 方法，因此也是引用比较。数组 equals 源码实现如下：
public boolean equals(Object obj) {
  return (this == obj);
}
而 Arrays.equals 的结果之所以是 true 是因为 Arrays.equals 重写了 equals 方法。源代码实现如下：
public static boolean equals(Object[] a, Object[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;
        int length = a.length;
        if (a2.length != length)
            return false;
        for (int i=0; i<length; i++) {
            Object o1 = a[i];
            Object o2 = a2[i];
            if (!(o1==null ? o2==null : o1.equals(o2)))
                return false;
        }
        return true;
    }
[bookmark: X3ce397aa2bc60f5f49b04166faf8c8f3daaaff0]8. 以下程序使用 Arrays.binarySearch 返回的结果是 true 还是 false？
String[] arr = {"dog", "cat", "pig", "bird"};
int result = Arrays.binarySearch(arr, "bird");
System.out.println(result == -1);
答：返回的结果是：true。
题目解析：使用 Arrays.binarySearch 之前一定要先调用 Arrays.sort() 对数组进行排序，否则返回的结果有误，本数组返回的结果是 ﹣1，是因为没有使用排序的结果，正确的使用请查看以下代码：
String[] arr = {"dog", "cat", "pig", "bird"};
Arrays.sort(arr);
int result = Arrays.binarySearch(arr, "bird");
System.out.println(result == -1);
[bookmark: arrays-对象有哪些常用的方法]9. Arrays 对象有哪些常用的方法？
答：Arrays 常用方法如下：
· Arrays.copyOf() 数组拷贝
· Arrays.asList() 数组转为 List 集合
· Arrays.fill() 数组赋值
· Arrays.sort() 数组排序
· Arrays.toString() 数组转字符串
· Arrays.binarySearch() 二分法查询元素
· Arrays.equals() 比较两个数组的值
[bookmark: 查询字符串数组中是否包含某个值有几种方法]10. 查询字符串数组中是否包含某个值有几种方法？
答：常见查询数组中是否包含某个值有以下两种方式：
· 方式一：Arrays.asList(array).contains(“key”);
· 方式二：Arrays.binarySearch(array, “key”);
具体的实现代码如下：
String[] arr = {"doc", "pig", "cat"};
// 方式一：Arrays.asList(array).contains
boolean bool = Arrays.asList(arr).contains("cat");
System.out.println(bool);
// 方式二：Arrays.binarySearch
Arrays.sort(arr);
boolean bool2 = Arrays.binarySearch(arr, "cat") > -1;
System.out.println(bool2);
[bookmark: 如何修改数组的第三个到第五个元素的值为-6]11. 如何修改数组的第三个到第五个元素的值为 6？
答：本题考察的知识点显然不是使用 for 循环修改那么简单，而是考察对 Arrays.fill() 方法的掌握，以下提供了两种实现方式可供参考。
方式一：for 循环方式
int[] arrInt = new int[10];
for (int i = 0; i < arrInt.length; i++) {
    if (i >= 2 && i < 5) {
        arrInt[i] = 6;
    }
}
方式二：Arrays.fill() 方式
int[] arrInt = new int[10];
Arrays.fill(arrInt, 2, 5, 6);
[bookmark: 总结]总结
在 Java 中数组本质是引用类型，数组只能用来存储固定大小的同类型元素。在 Java 中很多集合的内部都是依赖数组实现的，如 ArrayList 和 HashMap 等。数组的冒泡排序和选择排序也是面试常考的内容，很多公司会要求面试者手写冒泡排序。本文也介绍了数组、字符串和集合之间的相互转换，只有掌握好这些技能才能开发出更好的 Java 程序。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
