[bookmark: 数据结构之队列的使用-面试题]数据结构之队列的使用 + 面试题
队列（Queue）：与栈相对的一种数据结构， 集合（Collection）的一个子类。队列允许在一端进行插入操作，而在另一端进行删除操作的线性表，栈的特点是后进先出，而队列的特点是先进先出。队列的用处很大，比如实现消息队列。
Queue 类关系图，如下图所示：
[image: https://images.gitbook.cn/64fedb10-cebf-11e9-956a-e59402c7f15a]
enter image description here
注：为了让读者更直观地理解，上图为精简版的 Queue 类关系图。本文如无特殊说明，内容都是基于 Java 1.8 版本。
[bookmark: 队列queue]队列（Queue）
[bookmark: queue-分类]1）Queue 分类
从上图可以看出 Queue 大体可分为以下三类。
· 双端队列：双端队列（Deque）是 Queue 的子类也是 Queue 的补充类，头部和尾部都支持元素插入和获取。
· 阻塞队列：阻塞队列指的是在元素操作时（添加或删除），如果没有成功，会阻塞等待执行。例如，当添加元素时，如果队列元素已满，队列会阻塞等待直到有空位时再插入。
· 非阻塞队列：非阻塞队列和阻塞队列相反，会直接返回操作的结果，而非阻塞等待。双端队列也属于非阻塞队列。
[bookmark: queue-方法说明]2）Queue 方法说明
Queue 常用方法，如下图所示：
[image: https://images.gitbook.cn/78539610-cebf-11e9-956a-e59402c7f15a]
enter image description here
方法说明：
· add(E)：添加元素到队列尾部，成功返回 true，队列超出时抛出异常；
· offer(E)：添加元素到队列尾部，成功返回 true，队列超出时返回 false；
· remove()：删除元素，成功返回 true，失败返回 false；
· poll()：获取并移除此队列的第一个元素，若队列为空，则返回 null；
· peek()：获取但不移除此队列的第一个元素，若队列为空，则返回 null；
· element()：获取但不移除此队列的第一个元素，若队列为空，则抛异常。
[bookmark: queue-使用实例]3）Queue 使用实例
Queue<String> linkedList = new LinkedList<>();
linkedList.add("Dog");
linkedList.add("Camel");
linkedList.add("Cat");
while (!linkedList.isEmpty()) {
 System.out.println(linkedList.poll());
}
程序执行结果：
Dog
Camel
Cat
[bookmark: 阻塞队列]阻塞队列
[bookmark: blockingqueue]1）BlockingQueue
BlockingQueue 在 java.util.concurrent 包下，其他阻塞类都实现自 BlockingQueue 接口，BlockingQueue 提供了线程安全的队列访问方式，当向队列中插入数据时，如果队列已满，线程则会阻塞等待队列中元素被取出后再插入；当从队列中取数据时，如果队列为空，则线程会阻塞等待队列中有新元素再获取。
BlockingQueue 核心方法
插入方法：
· add(E)：添加元素到队列尾部，成功返回 true，队列超出时抛出异常；
· offer(E)：添加元素到队列尾部，成功返回 true，队列超出时返回 false ；
· put(E)：将元素插入到队列的尾部，如果该队列已满，则一直阻塞。 删除方法：
· remove(Object)：移除指定元素，成功返回 true，失败返回 false；
· poll()： 获取并移除队列的第一个元素，如果队列为空，则返回 null；
· take()：获取并移除队列第一个元素，如果没有元素则一直阻塞。 检查方法：
· peek()：获取但不移除队列的第一个元素，若队列为空，则返回 null。
[bookmark: linkedblockingqueue]2）LinkedBlockingQueue
LinkedBlockingQueue 是一个由链表实现的有界阻塞队列，容量默认值为 Integer.MAX_VALUE，也可以自定义容量，建议指定容量大小，默认大小在添加速度大于删除速度情况下有造成内存溢出的风险，LinkedBlockingQueue 是先进先出的方式存储元素。
[bookmark: arrayblockingqueue]3）ArrayBlockingQueue
ArrayBlockingQueue 是一个有边界的阻塞队列，它的内部实现是一个数组。它的容量是有限的，我们必须在其初始化的时候指定它的容量大小，容量大小一旦指定就不可改变。
ArrayBlockingQueue 也是先进先出的方式存储数据，ArrayBlockingQueue 内部的阻塞队列是通过重入锁 ReenterLock 和 Condition 条件队列实现的，因此 ArrayBlockingQueue 中的元素存在公平访问与非公平访问的区别，对于公平访问队列，被阻塞的线程可以按照阻塞的先后顺序访问队列，即先阻塞的线程先访问队列。而非公平队列，当队列可用时，阻塞的线程将进入争夺访问资源的竞争中，也就是说谁先抢到谁就执行，没有固定的先后顺序。
示例代码如下：
// 默认非公平阻塞队列
ArrayBlockingQueue queue = new ArrayBlockingQueue(6);
// 公平阻塞队列
ArrayBlockingQueue queue2 = new ArrayBlockingQueue(6,true);

// ArrayBlockingQueue 源码展示
public ArrayBlockingQueue(int capacity) {
 this(capacity, false);
}
public ArrayBlockingQueue(int capacity, boolean fair) {
 if (capacity <= 0)
 throw new IllegalArgumentException();
 this.items = new Object[capacity];
 lock = new ReentrantLock(fair);
 notEmpty = lock.newCondition();
 notFull = lock.newCondition();
}
[bookmark: delayqueue]4）DelayQueue
DelayQueue 是一个支持延时获取元素的无界阻塞队列，队列中的元素必须实现 Delayed 接口，在创建元素时可以指定延迟时间，只有到达了延迟的时间之后，才能获取到该元素。
实现了 Delayed 接口必须重写两个方法 ，getDelay(TimeUnit) 和 compareTo(Delayed)，如下代码所示：
class DelayElement implements Delayed {
 @Override
 // 获取剩余时间
 public long getDelay(TimeUnit unit) {
 // do something
 }
 @Override
 // 队列里元素的排序依据
 public int compareTo(Delayed o) {
 // do something
 }
 }
DelayQueue 使用的完整示例 ，请参考以下代码：
public class DelayTest {
 public static void main(String[] args) throws InterruptedException {
 DelayQueue delayQueue = new DelayQueue();
 delayQueue.put(new DelayElement(1000));
 delayQueue.put(new DelayElement(3000));
 delayQueue.put(new DelayElement(5000));
 System.out.println("开始时间：" + DateFormat.getDateTimeInstance().format(new Date()));
 while (!delayQueue.isEmpty()){
 System.out.println(delayQueue.take());
 }
 System.out.println("结束时间：" + DateFormat.getDateTimeInstance().format(new Date()));
 }

 static class DelayElement implements Delayed {
 // 延迟截止时间（单面：毫秒）
 long delayTime = System.currentTimeMillis();
 public DelayElement(long delayTime) {
 this.delayTime = (this.delayTime + delayTime);
 }
 @Override
 // 获取剩余时间
 public long getDelay(TimeUnit unit) {
 return unit.convert(delayTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
 }
 @Override
 // 队列里元素的排序依据
 public int compareTo(Delayed o) {
 if (this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) {
 return 1;
 } else if (this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS)) {
 return -1;
 } else {
 return 0;
 }
 }
 @Override
 public String toString() {
 return DateFormat.getDateTimeInstance().format(new Date(delayTime));
 }
 }
}
程序执行结果：
开始时间：2019-6-13 20:40:38
2019-6-13 20:40:39
2019-6-13 20:40:41
2019-6-13 20:40:43
结束时间：2019-6-13 20:40:43
[bookmark: 非阻塞队列]非阻塞队列
ConcurrentLinkedQueue 是一个基于链接节点的无界线程安全队列，它采用先进先出的规则对节点进行排序，当我们添加一个元素的时候，它会添加到队列的尾部；当我们获取一个元素时，它会返回队列头部的元素。
它的入队和出队操作均利用 CAS（Compare And Set）更新，这样允许多个线程并发执行，并且不会因为加锁而阻塞线程，使得并发性能更好。
ConcurrentLinkedQueue 使用示例：
ConcurrentLinkedQueue concurrentLinkedQueue = new ConcurrentLinkedQueue();
concurrentLinkedQueue.add("Dog");
concurrentLinkedQueue.add("Cat");
while (!concurrentLinkedQueue.isEmpty()) {
 System.out.println(concurrentLinkedQueue.poll());
}
执行结果：
Dog
Cat
可以看出不管是阻塞队列还是非阻塞队列，使用方法都是类似的，区别是底层的实现方式。
[bookmark: 优先级队列]优先级队列
PriorityQueue 一个基于优先级堆的无界优先级队列。优先级队列的元素按照其自然顺序进行排序，或者根据构造队列时提供的 Comparator 进行排序，具体取决于所使用的构造方法。优先级队列不允许使用 null 元素。
PriorityQueue 代码使用示例 ：
Queue<Integer> priorityQueue = new PriorityQueue(new Comparator<Integer>() {
 @Override
 public int compare(Integer o1, Integer o2) {
 // 非自然排序，数字倒序
 return o2 - o1;
 }
});
priorityQueue.add(3);
priorityQueue.add(1);
priorityQueue.add(2);
while (!priorityQueue.isEmpty()) {
 Integer i = priorityQueue.poll();
 System.out.println(i);
}
程序执行的结果是：
3
2
1
PriorityQueue 注意的点 ：
· PriorityQueue 是非线程安全的，在多线程情况下可使用 PriorityBlockingQueue 类替代；
· PriorityQueue 不允许插入 null 元素。
[bookmark: 相关面试题]相关面试题
[bookmark: X11a8f788d7cb8d21f1a5b7c76b5ecb51823e134]1.ArrayBlockingQueue 和 LinkedBlockingQueue 的区别是什么？
答：ArrayBlockingQueue 和 LinkedBlockingQueue 都实现自阻塞队列 BlockingQueue，它们的区别主要体现在以下几个方面：
· ArrayBlockingQueue 使用时必须指定容量值，LinkedBlockingQueue 可以不用指定；
· ArrayBlockingQueue 的最大容量值是使用时指定的，并且指定之后就不允许修改；而 LinkedBlockingQueue 最大的容量为 Integer.MAX_VALUE；
· ArrayBlockingQueue 数据存储容器是采用数组存储的；而 LinkedBlockingQueue 采用的是 Node 节点存储的。
[bookmark: linkedlist-中-add-和-offer-有什么关系]2.LinkedList 中 add() 和 offer() 有什么关系？
答：add() 和 offer() 都是添加元素到队列尾部。offer 方法是基于 add 方法实现的，Offer 的源码如下：
public boolean offer(E e) {
 return add(e);
}
[bookmark: queue-和-deque-有什么区别]3.Queue 和 Deque 有什么区别？
答：Queue 属于一般队列，Deque 属于双端队列。一般队列是先进先出，也就是只有先进的才能先出；而双端队列则是两端都能插入和删除元素。
[bookmark: linkedlist-属于一般队列还是双端队列]4.LinkedList 属于一般队列还是双端队列？
答：LinkedList 实现了 Deque 属于双端队列，因此拥有 addFirst(E)、addLast(E)、getFirst()、getLast() 等方法。
[bookmark: 以下说法错误的是]5.以下说法错误的是？
A：DelayQueue 内部是基于 PriorityQueue 实现的
B：PriorityBlockingQueue 不是先进先出的数据存储方式
C：LinkedBlockingQueue 默认容量是无限大的
D：ArrayBlockingQueue 内部的存储单元是数组，初始化时必须指定队列容量
答：C
题目解析：LinkedBlockingQueue 默认容量是 Integer.MAX_VALUE，并不是无限大的。
[bookmark: 关于-arrayblockingqueue-说法不正确的是]6.关于 ArrayBlockingQueue 说法不正确的是？
A：ArrayBlockingQueue 是线程安全的
B：ArrayBlockingQueue 元素允许为 null
C：ArrayBlockingQueue 主要应用场景是“生产者-消费者”模型
D：ArrayBlockingQueue 必须显示地设置容量
答：B
题目解析：ArrayBlockingQueue 不允许元素为 null，如果添加一个 null 元素，会抛 NullPointerException 异常。
[bookmark: 以下程序执行的结果是什么]7.以下程序执行的结果是什么？
PriorityQueue priorityQueue = new PriorityQueue();
priorityQueue.add(null);
System.out.println(priorityQueue.size());
答：程序执行报错，PriorityQueue 不能插入 null。
[bookmark: java-中常见的阻塞队列有哪些]8.Java 中常见的阻塞队列有哪些？
答：Java 中常见的阻塞队列如下：
· ArrayBlockingQueue，由数组结构组成的有界阻塞队列；
· PriorityBlockingQueue，支持优先级排序的无界阻塞队列；
· SynchronousQueue，是一个不存储元素的阻塞队列，会直接将任务交给消费者，必须等队列中的添加元素被消费后才能继续添加新的元素；
· LinkedBlockingQueue，由链表结构组成的阻塞队列；
· DelayQueue，支持延时获取元素的无界阻塞队列。
[bookmark: 有界队列和无界队列有哪些区别]9.有界队列和无界队列有哪些区别？
答：有界队列和无界队列的区别如下。
· 有界队列：有固定大小的队列叫做有界队列，比如：new ArrayBlockingQueue(6)，6 就是队列的大小。
· 无界队列：指的是没有设置固定大小的队列，这些队列的特点是可以直接入列，直到溢出。它们并不是真的无界，它们最大值通常为 Integer.MAX_VALUE，只是平常很少能用到这么大的容量（超过 Integer.MAX_VALUE），因此从使用者的体验上，就相当于 “无界”。
[bookmark: 如何手动实现一个延迟消息队列]10.如何手动实现一个延迟消息队列？
答：说到延迟消息队列，我们应该可以第一时间想到要使用 DelayQueue 延迟队列来解决这个问题。实现思路，消息队列分为生产者和消费者，生产者用于增加消息，消费者用于获取并消费消息，我们只需要生产者把消息放入到 DelayQueue 队列并设置延迟时间，消费者循环使用 take() 阻塞获取消息即可。完整的实现代码如下：
public class CustomDelayQueue {
 // 消息编号
 static AtomicInteger MESSAGENO = new AtomicInteger(1);

 public static void main(String[] args) throws InterruptedException {
 DelayQueue<DelayedElement> delayQueue = new DelayQueue<>();
 // 生产者1
 producer(delayQueue, "生产者1");
 // 生产者2
 producer(delayQueue, "生产者2");
 // 消费者
 consumer(delayQueue);
 }

 //生产者
 private static void producer(DelayQueue<DelayedElement> delayQueue, String name) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 // 产生 1~5 秒的随机数
 long time = 1000L * (new Random().nextInt(5) + 1);
 try {
 Thread.sleep(time);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 // 组合消息体
 String message = String.format("%s，消息编号：%s 发送时间：%s 延迟：%s 秒",
 name, MESSAGENO.getAndIncrement(), DateFormat.getDateTimeInstance().format(new Date()), time / 1000);
 // 生产消息
 delayQueue.put(new DelayedElement(message, time));
 }
 }
 }).start();
 }

 //消费者
 private static void consumer(DelayQueue<DelayedElement> delayQueue) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 DelayedElement element = null;
 try {
 // 消费消息
 element = delayQueue.take();
 System.out.println(element);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }).start();
 }

 // 延迟队列对象
 static class DelayedElement implements Delayed {
 // 过期时间（单位：毫秒）
 long time = System.currentTimeMillis();
 // 消息体
 String message;
 // 参数：delayTime 延迟时间（单位毫秒）
 public DelayedElement(String message, long delayTime) {
 this.time += delayTime;
 this.message = message;
 }
 @Override
 // 获取过期时间
 public long getDelay(TimeUnit unit) {
 return unit.convert(time - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
 }
 @Override
 // 队列元素排序
 public int compareTo(Delayed o) {
 if (this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS))
 return 1;
 else if (this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))
 return -1;
 else
 return 0;
 }
 @Override
 public String toString() {
 // 打印消息
 return message + " |执行时间：" + DateFormat.getDateTimeInstance().format(new Date());
 }
 }
}
以上程序支持多生产者，执行的结果如下：
生产者1，消息编号：1 发送时间：2019-6-12 20:38:37 延迟：2 秒 |执行时间：2019-6-12 20:38:39
生产者2，消息编号：2 发送时间：2019-6-12 20:38:37 延迟：2 秒 |执行时间：2019-6-12 20:38:39
生产者1，消息编号：3 发送时间：2019-6-12 20:38:41 延迟：4 秒 |执行时间：2019-6-12 20:38:45
生产者1，消息编号：5 发送时间：2019-6-12 20:38:43 延迟：2 秒 |执行时间：2019-6-12 20:38:45
……
[bookmark: 总结]总结
队列（Queue）按照是否阻塞可分为：阻塞队列 BlockingQueue 和 非阻塞队列。其中，双端队列 Deque 也属于非阻塞队列，双端队列除了拥有队列的先进先出的方法之外，还拥有自己独有的方法，如 addFirst()、addLast()、getFirst()、getLast() 等，支持首未插入和删除元素。队列中比较常用的两个队列还有 PriorityQueue（优先级队列）和 DelayQueue（延迟队列），可使用延迟队列来实现延迟消息队列，这也是面试中比较常考的问题之一。需要面试朋友对延迟队列一定要做到心中有数，动手写一个消息队列也是非常有必要的。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId21.png
AbstractQueue

LinkedList

LinkedBlockingQueue

ArrayBlockingQueue

DelayQueue

PriortyQueue

rId25.png
v 4% Queue
(@ = add(E): boolean tCollection
(@) = offer(E): boolean
(@ = remove(): E
(@ % poll): E
(@) = element(): E
(@ = peek(: E

