[bookmark: threadlocal-有什么用-面试题]ThreadLocal 有什么用 + 面试题
什么是 ThreadLocal？
ThreadLocal 诞生于 JDK 1.2，用于解决多线程间的数据隔离问题。也就是说 ThreadLocal 会为每一个线程创建一个单独的变量副本。
ThreadLocal 有什么用？
ThreadLocal 最典型的使用场景有两个：
· ThreadLocal 可以用来管理 Session，因为每个人的信息都是不一样的，所以就很适合用 ThreadLocal 来管理；
· 数据库连接，为每一个线程分配一个独立的资源，也适合用 ThreadLocal 来实现。
其中，ThreadLocal 也被用在很多大型开源框架中，比如 Spring 的事务管理器，还有 Hibernate 的 Session 管理等，既然 ThreadLocal 用途如此广泛，那接下来就让我们共同看看 ThreadLocal 要怎么用？ThreadLocal 使用中要注意什么？以及 ThreadLocal 的存储原理等，一起来看吧。
[bookmark: threadlocal-基础使用]ThreadLocal 基础使用
ThreadLocal 常用方法有 set(T)、get()、remove() 等，具体使用请参考以下代码。
ThreadLocal threadLocal = new ThreadLocal();
// 存值
threadLocal.set(Arrays.asList("老王", "Java 面试题"));
// 取值
List list = (List) threadLocal.get();
System.out.println(list.size());
System.out.println(threadLocal.get());
//删除值
threadLocal.remove();
System.out.println(threadLocal.get());
以上程序执行结果如下：
2
[老王, Java 面试题]
null
ThreadLocal 所有方法，如下图所示：
[image: https://images.gitbook.cn/78d17530-d43c-11e9-b555-8d750b738917]
[bookmark: threadlocal-数据共享]ThreadLocal 数据共享
既然 ThreadLocal 设计的初衷是解决线程间信息隔离的，那 ThreadLocal 能不能实现线程间信息共享呢？
答案是肯定的，只需要使用 ThreadLocal 的子类 InheritableThreadLocal 就可以轻松实现，来看具体实现代码：
ThreadLocal inheritableThreadLocal = new InheritableThreadLocal();
inheritableThreadLocal.set("老王");
new Thread(() -> System.out.println(inheritableThreadLocal.get())).start();
以上程序执行结果如下：
老王
从以上代码可以看出，主线程和新创建的线程之间实现了信息共享。
[bookmark: threadlocal-高级用法]ThreadLocal 高级用法
[bookmark: 内存溢出代码演示]内存溢出代码演示
下面我们用代码实现 ThreadLocal 内存溢出的情况，请参考以下代码。
class ThreadLocalTest {
    static ThreadLocal threadLocal = new ThreadLocal();
    static Integer MOCK_MAX = 10000;
    static Integer THREAD_MAX = 100;
    public static void main(String[] args) throws InterruptedException {
        ExecutorService executorService = Executors.newFixedThreadPool(THREAD_MAX);
        for (int i = 0; i < THREAD_MAX; i++) {
            executorService.execute(() -> {
                threadLocal.set(new ThreadLocalTest().getList());
                System.out.println(Thread.currentThread().getName());
            });
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        executorService.shutdown();
    }
    List getList() {
        List list = new ArrayList();
        for (int i = 0; i < MOCK_MAX; i++) {
            list.add("Version：JDK 8");
            list.add("ThreadLocal");
            list.add("Author：老王");
            list.add("DateTime：" + LocalDateTime.now());
            list.add("Test：ThreadLocal OOM");
        }
        return list;
    }
}
设置 JVM（Java 虚拟机）启动参数 -Xmx=100m （最大运行内存 100 M），运行程序不久后就会出现如下异常：
[image: https://images.gitbook.cn/8d5895b0-d43c-11e9-b555-8d750b738917]
此时我们用 VisualVM 观察到程序运行的内存使用情况，发现内存一直在缓慢地上升直到内存超出最大值，从而发生内存溢出的情况。
内存使用情况，如下图所示：
[image: https://images.gitbook.cn/9eacecd0-d43c-11e9-b555-8d750b738917]
[bookmark: 内存溢出原理分析]内存溢出原理分析
在开始之前，先来看下 ThreadLocal 是如何存储数据的。
首先，找到 ThreadLocal.set() 的源码，代码如下（此源码基于 JDK 8）：
public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}
可以看出 ThreadLocal 首先获取到 ThreadLocalMap 对象，然后再执行 ThreadLocalMap.set() 方法，进而打开此方法的源码，代码如下：
private void set(ThreadLocal<?> key, Object value) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);
    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        ThreadLocal<?> k = e.get();
        if (k == key) {
            e.value = value;
            return;
        }
        if (k == null) {
            replaceStaleEntry(key, value, i);
            return;
        }
    }
    tab[i] = new Entry(key, value);
    int sz = ++size;
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}
从整个代码可以看出，首先 ThreadLocal 并不存储数据，而是依靠 ThreadLocalMap 来存储数据，ThreadLocalMap 中有一个 Entry 数组，每个 Entry 对象是以 K/V 的形式对数据进行存储的，其中 K 就是 ThreadLocal 本身，而 V 就是要存储的值，如下图所示：
[image: https://images.gitbook.cn/b2f02680-d43c-11e9-a4b6-d1d2b628f523]
可以看出：一个 Thread 中只有一个 ThreadLocalMap，每个 ThreadLocalMap 中存有多个 ThreadLocal，ThreadLocal 引用关系如下：
[image: https://images.gitbook.cn/8cb725e0-d7bb-11e9-b208-c16ced46e7a1]
enter image description here
其中：实线代表强引用，虚线代表弱引用（弱引用具有更短暂的生命周期，在执行垃圾回收时，一旦发现只具有弱引用的对象，不管当前内存空间足够与否，都会回收它的内存）。
看到这里我们就理解了 ThreadLocal 造成内存溢出的原因：如果 ThreadLocal 没有被直接引用（外部强引用），在 GC（垃圾回收）时，由于 ThreadLocalMap 中的 key 是弱引用，所以一定就会被回收，这样一来 ThreadLocalMap 中就会出现 key 为 null 的 Entry，并且没有办法访问这些数据，如果当前线程再迟迟不结束的话，这些 key 为 null 的 Entry 的 value 就会一直存在一条强引用链：Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value 并且永远无法回收，从而造成内存泄漏。
[bookmark: threadlocal-的正确使用方法]ThreadLocal 的正确使用方法
既然已经知道了 ThreadLocal 内存溢出的原因，那解决办法就很清晰了，只需要在使用完 ThreadLocal 之后，调用remove() 方法，清除掉 ThreadLocalMap 中的无用数据就可以了。
正确使用的完整示例代码如下：
class ThreadLocalTest {
    static ThreadLocal threadLocal = new ThreadLocal();
    static Integer MOCK_MAX = 10000;
    static Integer THREAD_MAX = 100;
    public static void main(String[] args) throws InterruptedException {
        ExecutorService executorService = Executors.newFixedThreadPool(THREAD_MAX);
        for (int i = 0; i < THREAD_MAX; i++) {
            executorService.execute(() -> {
                threadLocal.set(new ThreadLocalTest().getList());
                System.out.println(Thread.currentThread().getName());
                // 移除对象
                threadLocal.remove(); 
            });
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        executorService.shutdown();
    }
    List getList() {
        List list = new ArrayList();
        for (int i = 0; i < MOCK_MAX; i++) {
            list.add("Version：JDK 8");
            list.add("ThreadLocal");
            list.add("Author：老王");
            list.add("DateTime：" + LocalDateTime.now());
            list.add("Test：ThreadLocal OOM");
        }
        return list;
    }
}
可以看出核心代码，我们添加了一句 threadLocal.remove() 命令就解决了内存溢出的问题，这个时候运行代码观察，发现内存的值一直在一个固定的范围内，如下图所示：
[image: https://images.gitbook.cn/c64f41c0-d43c-11e9-8095-7d08c9f27dca]
这样就解决了 ThreadLocal 内存溢出的问题了。
[bookmark: 相关面试题]相关面试题
[bookmark: threadlocal-为什么是线程安全的]1.ThreadLocal 为什么是线程安全的？
答：ThreadLocal 为每一个线程维护变量的副本，把共享数据的可见范围限制在同一个线程之内，因此 ThreadLocal 是线程安全的，每个线程都有属于自己的变量。
[bookmark: threadlocal-如何共享数据]2.ThreadLocal 如何共享数据？
答：通过 ThreadLocal 的子类 InheritableThreadLocal 可以天然的支持多线程间的信息共享。
[bookmark: 以下程序打印的结果是-true-还是-false]3.以下程序打印的结果是 true 还是 false？
ThreadLocal threadLocal = new InheritableThreadLocal();
threadLocal.set("老王");
ThreadLocal threadLocal2 = new ThreadLocal();
threadLocal2.set("老王");
new Thread(() -> {
    System.out.println(threadLocal.get().equals(threadLocal2.get()));
}).start();
答：false。
题目分析：因为 threadLocal 使用的是 InheritableThreadLocal（共享本地线程），所以 threadLocal.get() 结果为 老王 ，而 threadLocal2 使用的是 ThreadLocal，因此在新线程中 threadLocal2.get() 的结果为 null ，因而它们比较的最终结果为 false。
[bookmark: threadlocal-为什么会发生内存溢出]4.ThreadLocal 为什么会发生内存溢出？
答：ThreadLocal 造成内存溢出的原因：如果 ThreadLocal 没有被直接引用（外部强引用），在 GC（垃圾回收）时，由于 ThreadLocalMap 中的 key 是弱引用，所以一定就会被回收，这样一来 ThreadLocalMap 中就会出现 key 为 null 的 Entry，并且没有办法访问这些数据，如果当前线程再迟迟不结束的话，这些 key 为 null 的 Entry 的 value 就会一直存在一条强引用链：Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value 并且永远无法回收，从而造成内存泄漏。
[bookmark: 解决-threadlocal-内存溢出的关键代码是什么]5.解决 ThreadLocal 内存溢出的关键代码是什么？
答：关键代码为 threadLocal.remove() ，使用完 ThreadLocal 之后，调用remove() 方法，清除掉 ThreadLocalMap 中的无用数据就可以避免内存溢出了。
[bookmark: threadlocal-和-synchonized-有什么区别]6.ThreadLocal 和 Synchonized 有什么区别？
答：ThreadLocal 和 Synchonized 都用于解决多线程并发访问，防止任务在共享资源上产生冲突，但是 ThreadLocal 与 Synchronized 有本质的区别，Synchronized 用于实现同步机制，是利用锁的机制使变量或代码块在某一时刻只能被一个线程访问，是一种 “以时间换空间” 的方式；而 ThreadLocal 为每一个线程提供了独立的变量副本，这样每个线程的（变量）操作都是相互隔离的，这是一种 “以空间换时间” 的方式。
[bookmark: 总结]总结
ThreadLocal 的主要方法是 set(T) 和 get()，用于多线程间的数据隔离，ThreadLocal 也提供了 InheritableThreadLocal 子类，用于实现多线程间的数据共享。但使用 ThreadLocal 一定要注意用完之后使用 remove() 清空 ThreadLocal，不然会操作内存溢出的问题。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId22.png
Structure
i €eovlREvoo v
v @ Threadlocal
> a o SuppliedThreadLocal
» £ ° ThreadLocalMap

@ = ThreadLocal()

@ # nextHashCode(): int

@ ¢ initialvalue(): T

£ = withlnitial(Supplier<? extends S>): ThreadLocal<S>

@ % get): T

@ @ setinitialvalue(): T

@ = set(T): void

@ = remove(): void
getMap(Thread): ThreadLocalMap
createMap(Thread, T): void
createlnheritedMap(ThreadLocalMap): ThreadLocalMap
childValue(T): T
threadLocalHashCode: int = nextHashCode()
nextHashCode: Atomiclnteger = new Atomiclnteger()
HASH_INCREMENT: int = 0x61c88647

lol

>«

&
|

(5]
o o

°

(2145 X5

» B ® o




rId26.png
| Il M&Bdayv
m Y e > 5N

[=] Section4

pool-1-thread—59
pool-1-thread—60
pool-1-thread-61

Excep

fo o < < - < R < I =)

ion in thread “pool-1-thread—62” java. lang. OutOfMemoryError: Java heap space
java.util. Arrays. copyOf (Arrays. java:3181)

java.util. ArrayList. grow(ArrayList. java:265)

java.util. ArrayList. ensureExplicitCapacity (ArrayList. java:239)

java.util. ArrayList. ensureCapacityInternal (ArrayList. java:231)

java.util. ArrayList. add (ArrayList. java:462)

com. interview. chapter5. Section4. getList (Section4. java:46)

com. interview. chapter5. Section4$1. run(Section4. java:26) <2 internal calls>
java. lang. Thread. run (Thread. java:748)





rId27.png
i | Metaspace

Ko 95,420,416 ST
#K: 104,857,600 TF
100 B

CLkF - 83,868,440 1T

30 B

13:15:00

13:15:30 13:16:00

W oh BERR i




rId29.png
ThreadLocal

set

Threadloca

Entry

value





rId30.png
Stack

Local
Ref

Thread

Local [>s

&

Current
Thread
Ref

Current
Thread

Heap





rId32.png
| it | Metaspace x

Ko 96,993,280 F L kF - 18,365,592 71T
#K: 104,857,600 TF
100 1B
0 1
(3]
13:20:10 13:20:20 13:20:30

Wit Joh B ERE i




