

BIO、NIO、AIO、Netty

1. 什么是IO

Java中I/O是以流为基础进行数据的输入输出的，所有数据被串行化(所谓串行化就是数据要按顺序
进行输入输出)写入输出流。简单来说就是java通过io流方式和外部设备进行交互。
在Java类库中，IO部分的内容是很庞大的，因为它涉及的领域很广泛：标准输入输出，文件的操
作，网络上的数据传输流，字符串流，对象流等等等。

比如程序从服务器上下载图片，就是通过流的方式从网络上以流的方式到程序中，在到硬盘中

2. 在了解不同的IO之前先了解：同步与异步，阻塞与非阻塞的区别

同步，一个任务的完成之前不能做其他操作，必须等待（等于在打电话）
异步，一个任务的完成之前，可以进行其他操作（等于在聊QQ）
阻塞，是相对于CPU来说的， 挂起当前线程，不能做其他操作只能等待
非阻塞,，无须挂起当前线程，可以去执行其他操作

3. 什么是BIO

af://n485
af://n2
af://n13
af://n24

BIO：同步并阻塞，服务器实现一个连接一个线程，即客户端有连接请求时服务器端就需要启动一
个线程进行处理，没处理完之前此线程不能做其他操作（如果是单线程的情况下，我传输的文件很
大呢？），当然可以通过线程池机制改善。BIO方式适用于连接数目比较小且固定的架构，这种方
式对服务器资源要求比较高，并发局限于应用中，JDK1.4以前的唯一选择，但程序直观简单易理
解。

4. 什么是NIO

NIO:同步非阻塞，服务器实现一个连接一个线程，即客户端发送的连接请求都会注册到多路复用
器上，多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。NIO方式适用于连接数目多
且连接比较短（轻操作）的架构，比如聊天服务器，并发局限于应用中，编程比较复杂，JDK1.4
之后开始支持。

5. 什么是AIO

AIO：异步非阻塞，服务器实现模式为一个有效请求一个线程，客户端的I/O请求都是由操作系统
先完成了再通知服务器应用去启动线程进行处理，AIO方式使用于连接数目多且连接比较长（重操
作）的架构，比如相册服务器，充分调用操作系统参与并发操作，编程比较复杂，JDK1.7之后开
始支持。.
AIO属于NIO包中的类实现，其实IO主要分为BIO和NIO，AIO只是附加品，解决IO不能异步的实现
在以前很少有Linux系统支持AIO，Windows的IOCP就是该AIO模型。但是现在的服务器一般都是
支持AIO操作

6. 什么Netty

Netty是由JBOSS提供的一个Java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工
具，用以快速开发高性能、高可靠性的网络服务器和客户端程序。
Netty 是一个基于NIO的客户、服务器端编程框架，使用Netty 可以确保你快速和简单的开发出一
个网络应用，例如实现了某种协议的客户，服务端应用。Netty相当简化和流线化了网络应用的编
程开发过程，例如，TCP和UDP的socket服务开发。

Netty是由NIO演进而来，使用过NIO编程的用户就知道NIO编程非常繁重，Netty是能够能跟好的使用NIO

af://n29
af://n34
af://n43

7. BIO和NIO、AIO的区别

BIO是阻塞的，NIO是非阻塞的.
BIO是面向流的，只能单向读写，NIO是面向缓冲的, 可以双向读写
使用BIO做Socket连接时，由于单向读写，当没有数据时，会挂起当前线程，阻塞等待，为防止影
响其它连接,，需要为每个连接新建线程处理.，然而系统资源是有限的,，不能过多的新建线程，线
程过多带来线程上下文的切换，从来带来更大的性能损耗，因此需要使用NIO进行BIO多路复用，
使用一个线程来监听所有Socket连接，使用本线程或者其他线程处理连接
AIO是非阻塞 以异步方式发起 I/O 操作。当 I/O 操作进行时可以去做其他操作，由操作系统内核空
间提醒IO操作已完成（不懂的可以往下看）

8. IO流的分类

按照读写的单位大小来分：

字符流 ：以字符为单位，每次次读入或读出是16位数据。其只能读取字符类型数据。 (Java代码接

收数据为一般为 char数组，也可以是别的)
字节流：以字节为单位，每次次读入或读出是8位数据。可以读任何类型数据，图片、文件、音乐
视频等。 (Java代码接收数据只能为 byte数组)

按照实际IO操作来分：

输出流：从内存读出到文件。只能进行写操作。
输入流：从文件读入到内存。只能进行读操作。
注意：输出流可以帮助我们创建文件，而输入流不会。

按照读写时是否直接与硬盘，内存等节点连接分：

节点流：直接与数据源相连，读入或读出。
处理流：也叫包装流，是对一个对于已存在的流的连接进行封装，通过所封装的流的功能调用实现
数据读写。如添加个Buffering缓冲区。（意思就是有个缓存区，等于软件和mysql中的redis）
注意：为什么要有处理流？主要作用是在读入或写出时，对数据进行缓存，以减少I/O的次数，以
便下次更好更快的读写文件，才有了处理流。

9. 什么是内核空间

我们的应用程序是不能直接访问硬盘的，我们程序没有权限直接访问，但是操作系统
（Windows、Linux......）会给我们一部分权限较高的内存空间，他叫内核空间，和我们的实际硬
盘空间是有区别的

af://n52
af://n63
af://n88

10. 五种IO模型

注意：我这里的用户空间就是应用程序空间

1.阻塞BIO（blocking I/O）

A拿着一支鱼竿在河边钓鱼，并且一直在鱼竿前等，在等的时候不做其他的事情，十分专心。只有
鱼上钩的时，才结束掉等的动作，把鱼钓上来。
在内核将数据准备好之前，系统调用会一直等待所有的套接字，默认的是阻塞方式。

2.非阻塞NIO（noblocking I/O）

B也在河边钓鱼，但是B不想将自己的所有时间都花费在钓鱼上，在等鱼上钩这个时间段中，B也在
做其他的事情（一会看看书，一会读读报纸，一会又去看其他人的钓鱼等），但B在做这些事情的
时候，每隔一个固定的时间检查鱼是否上钩。一旦检查到有鱼上钩，就停下手中的事情，把鱼钓上
来。 B在检查鱼竿是否有鱼，是一个轮询的过程。

af://n94
af://n98
af://n105

3.异步AIO（asynchronous I/O）

C也想钓鱼，但C有事情，于是他雇来了D、E、F，让他们帮他等待鱼上钩，一旦有鱼上钩，就打
电话给C，C就会将鱼钓上去。

4.信号驱动IO（signal blocking I/O）

G也在河边钓鱼，但与A、B、C不同的是，G比较聪明，他给鱼竿上挂一个铃铛，当有鱼上钩的时
候，这个铃铛就会被碰响，G就会将鱼钓上来。

当应用程序请求数据时，内核一方面去取数据报内容返回，另一方面将程序控制权还给应用进程，应用进程继

续处理其他事情，是一种非阻塞的状态。

af://n110
af://n116

5.IO多路转接（I/O multiplexing）

H同样也在河边钓鱼，但是H生活水平比较好，H拿了很多的鱼竿，一次性有很多鱼竿在等，H不断
的查看每个鱼竿是否有鱼上钩。增加了效率，减少了等待的时间。

IO多路转接是属于阻塞IO，但可以对多个文件描述符进行阻塞监听，所以效率较阻塞IO的高。

11. 什么是比特(Bit),什么是字节(Byte),什么是字符(Char),它们长度是多少,各有什
么区别

Bit最小的二进制单位 ，是计算机的操作部分取值0或者1

信号驱动IO模型，应用进程告诉内核：当数据报准备好的时候，给我发送一个信号，对SIGIO信号进行捕捉，

并且调用我的信号处理函数来获取数据报。

IO多路转接是多了一个select函数，select函数有一个参数是文件描述符集合，对这些文件描述符进行循环

监听，当某个文件描述符就绪时，就对这个文件描述符进行处理。

af://n122
af://n132

Byte是计算机中存储数据的单元，是一个8位的二进制数，（计算机内部，一个字节可表示一个英
文字母，两个字节可表示一个汉字。） 取值（-128-127）

Char是用户的可读写的最小单位，他只是抽象意义上的一个符号。如‘5’，‘中’，‘￥’ 等等等等。在
java里面由16位bit组成Char 取值 （0-65535）

Bit 是最小单位 计算机他只能认识0或者1
Byte是8个字节 是给计算机看的
字符 是看到的东西 一个字符=二个字节

12. 什么叫对象序列化，什么是反序列化，实现对象序列化需要做哪些工作

对象序列化，将对象以二进制的形式保存在硬盘上
反序列化；将二进制的文件转化为对象读取
实现serializable接口，不想让字段放在硬盘上就加transient

13. 在实现序列化接口是时候一般要生成一个serialVersionUID字段,它叫做什么,
一般有什么用

如果用户没有自己声明一个serialVersionUID,接口会默认生成一个serialVersionUID
但是强烈建议用户自定义一个serialVersionUID,因为默认的serialVersinUID对于class的细节非常
敏感，反序列化时可能会导致InvalidClassException这个异常。
（比如说先进行序列化，然后在反序列化之前修改了类，那么就会报错。因为修改了类，对应的
SerialversionUID也变化了，而序列化和反序列化就是通过对比其SerialversionUID来进行的，一
旦SerialversionUID不匹配，反序列化就无法成功。

14. 怎么生成SerialversionUID

可序列化类可以通过声明名为 "serialVersionUID" 的字段（该字段必须是静态 (static)、最终
(final) 的 long 型字段）显式声明其自己的 serialVersionUID
两种显示的生成方式（当你一个类实现了Serializable接口，如果没有显示的定义
serialVersionUID，Eclipse会提供这个提示功能告诉你去定义 。在Eclipse中点击类中warning的
图标一下，Eclipse就会自动给定两种生成的方式。

15. BufferedReader属于哪种流,它主要是用来做什么的,它里面有那些经典的方法

属于处理流中的缓冲流，可以将读取的内容存在内存里面，有readLine（）方法

16. Java中流类的超类主要有那些？

超类代表顶端的父类（都是抽象类）
java.io.InputStream
java.io.OutputStream
java.io.Reader
java.io.Writer

17. 为什么图片、视频、音乐、文件等 都是要字节流来读取

af://n147
af://n156
af://n165
af://n172
af://n177
af://n190

这个很基础，你看看你电脑文件的属性就好了，CPU规定了计算机存储文件都是按字节算的

18. IO的常用类和方法，以及如何使用

前面讲了那么多废话，现在我们开始进入主题，后面很长，从开始的文件操作到后面的网络IO操作都会
有例子：

af://n196

19. IO基本操作讲解

这里的基本操作就是普通的读取操作，如果想要跟深入的了解不同的IO开发场景必须先了解IO的基本操作

1 按字符 流读取文件

1.1 按字符流的·节点流方式读取

如果我们要取的数据基本单位是字符，那么用（字符流）这种方法读取文件就比较适合。比如：读
取test.txt文件

注释：

af://n200
af://n204
af://n205

字符流 ：以字符为单位，每次次读入或读出是16位数据。其只能读取字符类型数据。 (Java代码接

收数据为一般为 char数组，也可以是别的)
字节流：以字节为单位，每次次读入或读出是8位数据。可以读任何类型数据，图片、文件、音乐
视频等。 (Java代码接收数据只能为 byte数组)
FileReader 类：（字符输入流） 注意：new FileReader("D:\test.txt");//文件必须存在

运行结果：

1.2 按字符流的·处理流方式读取

效果是一样，但是给了我们有不同的选择操作。进行了一个小封装，加缓冲功能，避免频繁读写硬
盘。我这只是简单演示，处理流其实还有很多操作
BufferedReader 类： 字符输入流使用的类，加缓冲功能，避免频繁读写硬盘

package com.test.io;

import java.io.FileReader;

import java.io.IOException;

public class TestFileReader {

 public static void main(String[] args) throws IOException {

 int num=0;

 //字符流接收使用的char数组

 char[] buf=new char[1024];

 //字符流、节点流打开文件类

 FileReader fr = new FileReader("D:\\test.txt");//文件必须存在

 //FileReader.read()：取出字符存到buf数组中,如果读取为-1代表为空即结束读取。

 //FileReader.read()：读取的是一个字符，但是java虚拟机会自动将char类型数据转换为int数据，

 //如果你读取的是字符A，java虚拟机会自动将其转换成97，如果你想看到字符可以在返回的字符数前加

（char）强制转换如

 while((num=fr.read(buf))!=-1) { }

 //检测一下是否取到相应的数据

 for(int i=0;i<buf.length;i++) {

 System.out.print(buf[i]);

 }

 }

}

package com.test.io;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

af://n223

测试效果一样

2 按字符 流写出文件

2.1 按字符流的·节点流方式写出

写出字符，使用（字符流）这种方法写出文件比较适合。比如：输出内容添加到test.txt文件
FileWriter类：（字符输出流），如果写出文件不存在会自动创建一个相对应的文件。使用
FileWriter写出文件默认是覆盖原文件，如果要想在源文件添加内容不覆盖的话，需要构造参数添
加true参数：看示例了解

public class TestBufferedReader {

 public static void main(String[] args) throws IOException {

 int num=0;

 //字符流接收使用的String数组

 String[] bufstring=new String[1024];

 //字符流、节点流打开文件类

 FileReader fr = new FileReader("D:\\test.txt");//文件必须存在

 //字符流、处理流读取文件类

 BufferedReader br = new BufferedReader(fr);

 //临时接收数据使用的变量

 String line=null;

 //BufferedReader.readLine()：单行读取，读取为空返回null

 while((line=br.readLine())!=null) {

 bufstring[num]=line;

 num++;

 }

 br.close();//关闭文件

 for(int i=0;i<num;i++) {

 System.out.println(bufstring[i]);

 }

 }

}

package com.test.io;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

public class TestFileWriter {

 public static void main(String[] args) throws IOException {

 //File是操作文件类

 File file = new File("D:\\test.txt");//文件必须存在

 //字符流、节点流写出文件类

 //new FileWriter(file,true)，这个true代表追加，不写就代表覆盖文件

 FileWriter out=new FileWriter(file,true);

 //写入的字节,\n代表换行

 String str="\nholler";

af://n234
af://n235

运行效果：

2.2 按字符流的·处理流方式写出

BufferedWriter ： 增加缓冲功能，避免频繁读写硬盘。 我这里： //new FileWriter(file)，这里我
只给了他文件位置，我没加true代表覆盖源文件

运行效果：

3 按字节 流写入写出文件

3.1 按字节流的·节点流写入写出文件

如果我们要取的数据 图片、文件、音乐视频等类型，就必须使用字节流进行读取写出

注释：

 //写入

 out.write(str);

 out.close();

 }

}

package com.test.io;

import java.io.*;

public class TestBufferedWriter {

 public static void main(String[] args) throws IOException {

 //File是操作文件类

 File file = new File("D:\\test.txt");//文件必须存在

 //字符流、节点流写出文件类

 //new FileWriter(file)，这个我没加true代表覆盖文件

 Writer writer = new FileWriter(file);

 ////字符流、处理流写出文件类

 BufferedWriter bw = new BufferedWriter(writer);

 bw.write("\n小心");

 bw.close();

 writer.close();

 }

}

af://n246
af://n255
af://n256

字符流 ：以字符为单位，每次次读入或读出是16位数据。其只能读取字符类型数据。 (Java代码接

收数据为一般为 char数组，也可以是别的)
字节流：以字节为单位，每次次读入或读出是8位数据。可以读任何类型数据，图片、文件、音乐
视频等。 (Java代码接收数据只能为 byte数组)
FileInputStream：（字节输入流）
FileOutputStream：（字节输出流）

运行之前：

3.2 按字节流的·处理流写入写出文件

FileInputStream：（字节输入流）
FileOutputStream：（字节输出流）
BufferedInputStream：（带缓冲区字节输入流）

package com.test.io;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class TestFileOutputStream {

 public static void main(String[] args) throws IOException {

 //创建字节输入流、节点流方式读取文件

 FileInputStream fis = new FileInputStream("D:\\Akie秋绘 - Lemon（Cover：米津玄

師）.mp3");

 //创建字节输入流、节点流方式输出文件

 FileOutputStream fos = new FileOutputStream("D:\\copy.mp3");

 //根据文件大小做一个字节数组

 byte[] arr = new byte[fis.available()];

 //将文件上的所有字节读取到数组中

 fis.read(arr);

 //将数组中的所有字节一次写到了文件上

 fos.write(arr);

 fis.close();

 fos.close();

 }

}

运行之后：

af://n277

BufferedOutputStream：（带缓冲区字节输入流） 带缓冲区的处理流，缓冲区的作用的主要目
的是：避免每次和硬盘打交道，提高数据访问的效率。

运行之前：

 运行之后：

20. 网络操作IO讲解

我这使用Socket简单的来模拟网络编程IO会带来的问题
不懂Socket可以看我之前的文章，这个东西很容易懂的，就是基于TCP实现的网络通信，比http要
快，很多实现网络通信的框架都是基于Socket来实现

package com.test.io;

import java.io.*;

public class TestBufferedOutputStream {

 //创建文件输入流对象,关联致青春.mp3

 public static void main(String[] args) throws IOException {

 FileInputStream fis = new FileInputStream("D:\\copy.mp3");

 //创建缓冲区对fis装饰

 BufferedInputStream bis = new BufferedInputStream(fis);

 //创建输出流对象,关联copy.mp3

 FileOutputStream fos = new FileOutputStream("D:\\copy2.mp3");

 //创建缓冲区对fos装饰

 BufferedOutputStream bos = new BufferedOutputStream(fos);

 //循环直接输出

 int i;

 while((i = bis.read()) != -1) {

 bos.write(i);

 }

 bis.close();

 bos.close();

 }

}

af://n294

21. 网络操作IO编程演变历史

1 BIO编程会出现什么问题？

BIO是阻塞的
例子： 阻塞IO（blocking I/O） A拿着一支鱼竿在河边钓鱼，并且一直在鱼竿前等，在等的时候不
做其他的事情，十分专心。只有鱼上钩的时，才结束掉等的动作，把鱼钓上来。

看起来没问题，但是我很多请求一起发送请求资源怎么办：

BIO代码示例：（ 后面有代码，往后移动一点点，认真看，代码学习量很足 ）

我这有三个类，我模拟启动服务端，然后启动客户端，模拟客户端操作未完成的时候启动第二个客
户端

1. 启动服务端（ 后面有代码，我这是教运行顺序 ）

2. 启动第一个客户端，发现服务器显示连接成功 先不要在控制台 输入 ，模拟堵塞。（我的代码输入了

就代表请求完成了）

那不是要等待第一个人资源完成后后面的人才可以继续？ 因为BIO是阻塞的所以读取写出操作都是非常

浪费资源的

af://n301
af://n302

3. 启动第二个客户端， 发现服务端没效果 ，而客户端连接成功（在堵塞当中） 我这启动了俩个

Client，注意看，(这俩个代码是一样的)

 ·

4. 第一个客户控制台输入，输入完后就会关闭第一个客户端， 在看服务端发现第二个客户端连接上
来了

BIO通信代码：

TCP协议Socket使用BIO进行通信：服务端（先执行）

·

·

TCP协议Socket使用BIO进行通信：客户端（第二执行）

package com.test.io;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.ServerSocket;

import java.net.Socket;

//TCP协议Socket使用BIO进行通信：服务端

public class BIOServer {

 // 在main线程中执行下面这些代码

 public static void main(String[] args) {

 //使用Socket进行网络通信

 ServerSocket server = null;

 Socket socket = null;

 //基于字节流

 InputStream in = null;

 OutputStream out = null;

 try {

 server = new ServerSocket(8000);

 System.out.println("服务端启动成功，监听端口为8000，等待客户端连接...");

 while (true){

 socket = server.accept(); //等待客户端连接

 System.out.println("客户连接成功，客户信息为：" +

socket.getRemoteSocketAddress());

 in = socket.getInputStream();

 byte[] buffer = new byte[1024];

 int len = 0;

 //读取客户端的数据

 while ((len = in.read(buffer)) > 0) {

 System.out.println(new String(buffer, 0, len));

 }

 //向客户端写数据

 out = socket.getOutputStream();

 out.write("hello!".getBytes());

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

package com.test.io;

import java.io.IOException;

import java.io.OutputStream;

import java.net.Socket;

import java.util.Scanner;

//TCP协议Socket使用BIO进行通信：客户端

public class Client01 {

 public static void main(String[] args) throws IOException {

 //创建套接字对象socket并封装ip与port

 Socket socket = new Socket("127.0.0.1", 8000);

TCP协议Socket使用BIO进行通信：客户端（第三执行）

为了解决堵塞问题，可以使用多线程，请看下面

2 多线程解决BIO编程会出现的问题

这时有人就会说，我多线程不就解决了吗?

使用多线程是可以解决堵塞等待时间很长的问题，因为他可以充分发挥CPU
然而系统资源是有限的，不能过多的新建线程，线程过多带来线程上下文的切换，从来带来更大的
性能损耗

 //根据创建的socket对象获得一个输出流

 //基于字节流

 OutputStream outputStream = socket.getOutputStream();

 //控制台输入以IO的形式发送到服务器

 System.out.println("TCP连接成功 \n请输入：");

 String str = new Scanner(System.in).nextLine();

 byte[] car = str.getBytes();

 outputStream.write(car);

 System.out.println("TCP协议的Socket发送成功");

 //刷新缓冲区

 outputStream.flush();

 //关闭连接

 socket.close();

 }

}

package com.test.io;

import java.io.IOException;

import java.io.OutputStream;

import java.net.Socket;

import java.util.Scanner;

//TCP协议Socket：客户端

public class Client02 {

 public static void main(String[] args) throws IOException {

 //创建套接字对象socket并封装ip与port

 Socket socket = new Socket("127.0.0.1", 8000);

 //根据创建的socket对象获得一个输出流

 //基于字节流

 OutputStream outputStream = socket.getOutputStream();

 //控制台输入以IO的形式发送到服务器

 System.out.println("TCP连接成功 \n请输入：");

 String str = new Scanner(System.in).nextLine();

 byte[] car = str.getBytes();

 outputStream.write(car);

 System.out.println("TCP协议的Socket发送成功");

 //刷新缓冲区

 outputStream.flush();

 //关闭连接

 socket.close();

 }

}

af://n354

万一请求越来越多，线程越来越多那我CPU不就炸了？

多线程BIO代码示例：

四个客户端，这次我多复制了俩个一样客户端类

`先启动服务端，在启动所有客户端，测试`，发现连接成功（`后面有代码`）

在所有客户端输入消息（`Client01、Client02这些是我在客户端输入的消息`）：发现没有问题

多线程BIO通信代码：

服务端的代码，客户端的代码还是上面之前的代码

package com.test.io;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.ServerSocket;

import java.net.Socket;

//TCP协议Socket使用多线程BIO进行通行：服务端

public class BIOThreadService {

 public static void main(String[] args) {

 try {

 ServerSocket server = new ServerSocket(8000);

 System.out.println("服务端启动成功，监听端口为8000，等待客户端连接... ");

 while (true) {

 Socket socket = server.accept();//等待客户连接

 System.out.println("客户连接成功，客户信息为：" +

socket.getRemoteSocketAddress());

 //针对每个连接创建一个线程， 去处理I0操作

 //创建多线程创建开始

 Thread thread = new Thread(new Runnable() {

 public void run() {

 try {

 InputStream in = socket.getInputStream();

 byte[] buffer = new byte[1024];

 int len = 0;

 //读取客户端的数据

 while ((len = in.read(buffer)) > 0) {

 System.out.println(new String(buffer, 0, len));

 }

 //向客户端写数据

 OutputStream out = socket.getOutputStream();

 out.write("hello".getBytes());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 });

 thread.start();

 }

 } catch (IOException e) {

 e.printStackTrace();

为了解决线程太多，这时又来了，线程池

3 线程池解决多线程BIO编程会出现的问题

这时有人就会说，我TM用线程池?

线程池固然可以解决这个问题，万一需求量还不够还要扩大线程池。当是这是我们自己靠着自己的
思想完成的IO操作，Socket 上来了就去创建线程去抢夺CPU资源，MD，线程都TM做IO去了，
CPU也不舒服呀
这时呢：Jdk官方坐不住了，兄弟BIO的问题交给我，我来给你解决： NIO的诞生

线程池BIO代码示例：

四个客户端

 }

 }

}

`先启动服务端，在启动所有客户端，测试`，（`后面有代码`）

af://n379

线程池BIO通信代码：

服务端的代码，客户端的代码还是上面的代码

在所有客户端输入消息（`Client01、Client02这些是我在客户端输入的消息`）：发现没有问题

package com.test.io;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

//TCP协议Socket使用线程池BIO进行通行：服务端

public class BIOThreadPoolService {

 public static void main(String[] args) {

 //创建线程池

 ExecutorService executorService = Executors.newFixedThreadPool(30);

 try {

 ServerSocket server = new ServerSocket(8000);

 System.out.println("服务端启动成功，监听端口为8000，等待客户端连接...");

 while (true) {

 Socket socket = server.accept();//等待客户连接

 System.out.println("客户连接成功，客户信息为：" +

socket.getRemoteSocketAddress());

 //使用线程池中的线程去执行每个对应的任务

 executorService.execute(new Thread(new Runnable() {

 public void run() {

 try {

 InputStream in = socket.getInputStream();

 byte[] buffer = new byte[1024];

 int len = 0;

 //读取客户端的数据

 while ((len = in.read(buffer)) > 0) {

 System.out.println(new String(buffer, 0, len));

 }

 //向客户端写数据

 OutputStream out = socket.getOutputStream();

 out.write("hello".getBytes());

 } catch (IOException e) {

 e.printStackTrace();

 }

4 使用NIO实现网络通信

NIO是JDK1.4提供的操作，他的流还是流，没有改变，服务器实现的还是一个连接一个线程，当
是： 客户端发送的连接请求都会注册到多路复用器上 ，多路复用器轮询到连接有I/O请求时才启动一个

线程进行处理。NIO方式适用于连接数目多且连接比较短（轻操作）的架构，比如聊天服务器，并
发局限于应用中，编程比较复杂，JDK1.4之后开始支持。

看不懂介绍可以认真看看代码实例，其实不难

什么是通道（Channel）

Channel是一个对象，可以通过它读取和写入数据。 通常我们都是将数据写入包含一个或者多个
字节的缓冲区，然后再将缓存区的数据写入到通道中，将数据从通道读入缓冲区，再从缓冲区获取
数据。

Channel 类似于原I/O中的流（Stream），但有所区别：

流是单向的，通道是双向的，可读可写。
流读写是阻塞的，通道可以异步读写。

什么是选择器（Selector）

Selector可以称他为通道的集合，每次客户端来了之后我们会把Channel注册到Selector中并且我
们给他一个状态，在用死循环来环判断(判断是否做完某个操作，完成某个操作后改变不一样的状态)状
态是否发生变化，知道IO操作完成后在退出死循环

什么是Buffer（缓冲区）

Buffer 是一个缓冲数据的对象， 它包含一些要写入或者刚读出的数据。
在普通的面向流的 I/O 中，一般将数据直接写入或直接读到 Stream 对象中。当是有了Buffer（缓
冲区）后，数据第一步到达的是Buffer（缓冲区）中

 }

 })

);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

af://n401
af://n407
af://n418
af://n422

缓冲区实质上是一个数组(底层完全是数组实现的，感兴趣可以去看一下)。通常它是一个字节数组，

内部维护几个状态变量，可以实现在同一块缓冲区上反复读写（不用清空数据再写）。

代码实例：

目录结构

运行示例，先运行服务端，在运行所有客户端控制台输入消息就好了。： 我这客户端和服务端代码

有些修该变，后面有代码

服务端示例，先运行，想要搞定NIO请认真看代码示例，真的很清楚

package com.test.io;

import com.lijie.iob.RequestHandler;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SelectionKey;

import java.nio.channels.Selector;

import java.nio.channels.ServerSocketChannel;

import java.nio.channels.SocketChannel;

import java.util.Iterator;

import java.util.Set;

public class NIOServer {

 public static void main(String[] args) throws IOException {

 //111111111

 //Service端的Channel，监听端口的

 ServerSocketChannel serverChannel = ServerSocketChannel.open();

 //设置为非阻塞

 serverChannel.configureBlocking(false);

 //nio的api规定这样赋值端口

 serverChannel.bind(new InetSocketAddress(8000));

 //显示Channel是否已经启动成功，包括绑定在哪个地址上

 System.out.println("服务端启动成功，监听端口为8000，等待客户端连接..."+

serverChannel.getLocalAddress());

af://n430

 //22222222

 //声明selector选择器

 Selector selector = Selector.open();

 //这句话的含义，是把selector注册到Channel上面，

 //每个客户端来了之后，就把客户端注册到Selector选择器上,默认状态是Accepted

 serverChannel.register(selector, SelectionKey.OP_ACCEPT);

 //33333333

 //创建buffer缓冲区，声明大小是1024，底层使用数组来实现的

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 RequestHandler requestHandler = new RequestHandler();

 //444444444

 //轮询，服务端不断轮询，等待客户端的连接

 //如果有客户端轮询上来就取出对应的Channel，没有就一直轮询

 while (true) {

 int select = selector.select();

 if (select == 0) {

 continue;

 }

 //有可能有很多，使用Set保存Channel

 Set<SelectionKey> selectionKeys = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectionKeys.iterator();

 while (iterator.hasNext()) {

 //使用SelectionKey来获取连接了客户端和服务端的Channel

 SelectionKey key = iterator.next();

 //判断SelectionKey中的Channel状态如何，如果是OP_ACCEPT就进入

 if (key.isAcceptable()) {

 //从判断SelectionKey中取出Channel

 ServerSocketChannel channel = (ServerSocketChannel)

key.channel();

 //拿到对应客户端的Channel

 SocketChannel clientChannel = channel.accept();

 //把客户端的Channel打印出来

 System.out.println("客户端通道信息打印：" + clientChannel.getRemoteAddress());

 //设置客户端的Channel设置为非阻塞

 clientChannel.configureBlocking(false);

 //操作完了改变SelectionKey中的Channel的状态OP_READ

 clientChannel.register(selector, SelectionKey.OP_READ);

 }

 //到此轮训到的时候，发现状态是read，开始进行数据交互

 if (key.isReadable()) {

 //以buffer作为数据桥梁

 SocketChannel channel = (SocketChannel) key.channel();

 //数据要想读要先写，必须先读取到buffer里面进行操作

 channel.read(buffer);

 //进行读取

 String request = new String(buffer.array()).trim();

 buffer.clear();

 //进行打印buffer中的数据

 System.out.println(String.format("客户端发来的消息： %s : %s",

channel.getRemoteAddress(), request));

 //要返回数据的话也要先返回buffer里面进行返回

 String response = requestHandler.handle(request);

 //然后返回出去

 channel.write(ByteBuffer.wrap(response.getBytes()));

 }

客户端示例：（ 我这用的不是之前的了，有修改 ）运行起来客户端控制台输入消息就好了。 要模拟

测试，请复制粘贴改一下，修改客户端的类名就行了，四个客户端代码一样的 ,

5 使用Netty实现网络通信

Netty是由JBOSS提供的一个Java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工
具，用以快速开发高性能、高可靠性的网络服务器和客户端程序。
Netty 是一个基于NIO的客户、服务器端编程框架，使用Netty 可以确保你快速和简单的开发出一
个网络应用，例如实现了某种协议的客户，服务端应用。Netty相当简化和流线化了网络应用的编
程开发过程，例如，TCP和UDP的Socket服务开发。

 iterator.remove();

 }

 }

 }

}

package com.test.io;

import java.io.IOException;

import java.io.OutputStream;

import java.net.Socket;

import java.util.Scanner;

//TCP协议Socket：客户端

public class Client01 {

 public static void main(String[] args) throws IOException {

 //创建套接字对象socket并封装ip与port

 Socket socket = new Socket("127.0.0.1", 8000);

 //根据创建的socket对象获得一个输出流

 OutputStream outputStream = socket.getOutputStream();

 //控制台输入以IO的形式发送到服务器

 System.out.println("TCP连接成功 \n请输入：");

 while(true){

 byte[] car = new Scanner(System.in).nextLine().getBytes();

 outputStream.write(car);

 System.out.println("TCP协议的Socket发送成功");

 //刷新缓冲区

 outputStream.flush();

 }

 }

}

af://n448

Netty的原里就是NIO，他是基于NIO的一个完美的封装，并且优化了NIO，使用他非常方便，简单
快捷
我直接上代码：

1、先添加依赖：

2、NettyServer 模板，看起来代码那么多， 其实只需要添加一行消息就好了

请认真看中间的代码

Netty是由NIO演进而来，使用过NIO编程的用户就知道NIO编程非常繁重，Netty是能够能跟好的使用NIO

 <dependency>

 <groupId>io.netty</groupId>

 <artifactId>netty-all</artifactId>

 <version>4.1.16.Final</version>

 </dependency>

package com.lijie.iob;

import io.netty.bootstrap.ServerBootstrap;

import io.netty.channel.*;

import io.netty.channel.nio.NioEventLoopGroup;

import io.netty.channel.socket.SocketChannel;

import io.netty.channel.socket.nio.NioServerSocketChannel;

import io.netty.handler.codec.serialization.ClassResolvers;

import io.netty.handler.codec.serialization.ObjectEncoder;

import io.netty.handler.codec.string.StringDecoder;

public class NettyServer {

 public static void main(String[] args) throws InterruptedException {

 EventLoopGroup bossGroup = new NioEventLoopGroup();

3、需要做的IO操作，重点是继承ChannelInboundHandlerAdapter类就好了

 EventLoopGroup workerGroup = new NioEventLoopGroup();

 try {

 ServerBootstrap b = new ServerBootstrap();

 b.group(bossGroup, workerGroup)

 .channel(NioServerSocketChannel.class)

 .childHandler(new ChannelInitializer<SocketChannel>() {

 @Override

 protected void initChannel(SocketChannel socketChannel)

throws Exception {

 ChannelPipeline pipeline = socketChannel.pipeline();

 pipeline.addLast(new StringDecoder());

 pipeline.addLast("encoder", new ObjectEncoder());

 pipeline.addLast(" decoder", new

io.netty.handler.codec.serialization.ObjectDecoder(Integer.MAX_VALUE,

ClassResolvers.cacheDisabled(null)));

 //重点，其他的都是复用的

 //这是真正的I0的业务代码，把他封装成一个个的个Hand1e类就行了

 //把他当成 SpringMVC的Controller

 pipeline.addLast(new NettyServerHandler());

 }

 })

 .option(ChannelOption.SO_BACKLOG, 128)

 .childOption(ChannelOption.SO_KEEPALIVE, true);

 ChannelFuture f = b.bind(8000).sync();

 System.out.println("服务端启动成功，端口号为:" + 8000);

 f.channel().closeFuture().sync();

 } finally {

 workerGroup.shutdownGracefully();

 bossGroup.shutdownGracefully();

 }

 }

}

package com.lijie.iob;

import io.netty.channel.Channel;

import io.netty.channel.ChannelHandlerContext;

import io.netty.channel.ChannelInboundHandlerAdapter;

public class NettyServerHandler extends ChannelInboundHandlerAdapter {

 RequestHandler requestHandler = new RequestHandler();

 @Override

 public void handlerAdded(ChannelHandlerContext ctx) throws Exception {

 Channel channel = ctx.channel();

 System.out.println(String.format("客户端信息： %s",

channel.remoteAddress()));

 }

 @Override

 public void channelRead(ChannelHandlerContext ctx, Object msg) throws

Exception {

4 客户的代码还是之前NIO的代码，我在复制下来一下吧

运行测试，还是之前那样，启动服务端，在启动所有客户端控制台输入就好了：

 Channel channel = ctx.channel();

 String request = (String) msg;

 System.out.println(String.format("客户端发送的消息 %s : %s",

channel.remoteAddress(), request));

 String response = requestHandler.handle(request);

 ctx.write(response);

 ctx.flush();

 }

}

package com.test.io;

import java.io.IOException;

import java.io.OutputStream;

import java.net.Socket;

import java.util.Scanner;

//TCP协议Socket：客户端

public class Client01 {

 public static void main(String[] args) throws IOException {

 //创建套接字对象socket并封装ip与port

 Socket socket = new Socket("127.0.0.1", 8000);

 //根据创建的socket对象获得一个输出流

 OutputStream outputStream = socket.getOutputStream();

 //控制台输入以IO的形式发送到服务器

 System.out.println("TCP连接成功 \n请输入：");

 while(true){

 byte[] car = new Scanner(System.in).nextLine().getBytes();

 outputStream.write(car);

 System.out.println("TCP协议的Socket发送成功");

 //刷新缓冲区

 outputStream.flush();

 }

 }

}

	BIO、NIO、AIO、Netty
	1. 什么是IO
	2. 在了解不同的IO之前先了解：同步与异步，阻塞与非阻塞的区别
	3. 什么是BIO
	4. 什么是NIO
	5. 什么是AIO
	6. 什么Netty
	7. BIO和NIO、AIO的区别
	8. IO流的分类
	9. 什么是内核空间
	10. 五种IO模型
	1.阻塞BIO（blocking I/O）
	2.非阻塞NIO（noblocking I/O）
	3.异步AIO（asynchronous I/O）
	4.信号驱动IO（signal blocking I/O）
	5.IO多路转接（I/O multiplexing）

	11. 什么是比特(Bit),什么是字节(Byte),什么是字符(Char),它们长度是多少,各有什么区别
	12. 什么叫对象序列化，什么是反序列化，实现对象序列化需要做哪些工作
	13. 在实现序列化接口是时候一般要生成一个serialVersionUID字段,它叫做什么,一般有什么用
	14. 怎么生成SerialversionUID
	15. BufferedReader属于哪种流,它主要是用来做什么的,它里面有那些经典的方法
	16. Java中流类的超类主要有那些？
	17. 为什么图片、视频、音乐、文件等 都是要字节流来读取
	18. IO的常用类和方法，以及如何使用
	19. IO基本操作讲解
	1 按字符流读取文件
	1.1 按字符流的·节点流方式读取
	1.2 按字符流的·处理流方式读取

	2 按字符流写出文件
	2.1 按字符流的·节点流方式写出
	2.2 按字符流的·处理流方式写出

	3 按字节流写入写出文件
	3.1 按字节流的·节点流写入写出文件
	3.2 按字节流的·处理流写入写出文件

	20. 网络操作IO讲解
	21. 网络操作IO编程演变历史
	1 BIO编程会出现什么问题？
	2 多线程解决BIO编程会出现的问题
	3 线程池解决多线程BIO编程会出现的问题
	4 使用NIO实现网络通信
	什么是通道（Channel）
	什么是选择器（Selector）
	什么是Buffer（缓冲区）
	代码实例：

	5 使用Netty实现网络通信

