
总结了JVM一些经典面试题，分享出我自己的解题思路，希望对大家有帮助，有哪里你觉得不正确的
话，欢迎指出，后续有空会更新。

1.什么情况下会发生栈内存溢出。

思路： 描述栈定义，再描述为什么会溢出，再说明一下相关配置参数，OK的话可以给面试官手写是一
个栈溢出的demo。

我的答案：

栈是线程私有的，他的生命周期与线程相同，每个方法在执行的时候都会创建一个栈帧，用来存储
局部变量表，操作数栈，动态链接，方法出口等信息。局部变量表又包含基本数据类型，对象引用
类型
如果线程请求的栈深度大于虚拟机所允许的最大深度，将抛出StackOverflowError异常，方法递
归调用产生这种结果。
如果Java虚拟机栈可以动态扩展，并且扩展的动作已经尝试过，但是无法申请到足够的内存去完成
扩展，或者在新建立线程的时候没有足够的内存去创建对应的虚拟机栈，那么Java虚拟机将抛出一
个OutOfMemory 异常。(线程启动过多)
参数 -Xss 去调整JVM栈的大小

2.详解JVM内存模型

思路： 给面试官画一下JVM内存模型图，并描述每个模块的定义，作用，以及可能会存在的问题，如栈
溢出等。

我的答案：

JVM内存结构

af://n2
af://n14

程序计数器：当前线程所执行的字节码的行号指示器，用于记录正在执行的虚拟机字节指令地址，线程
私有。

Java虚拟栈：存放基本数据类型、对象的引用、方法出口等，线程私有。

Native方法栈：和虚拟栈相似，只不过它服务于Native方法，线程私有。

Java堆：java内存最大的一块，所有对象实例、数组都存放在java堆，GC回收的地方，线程共享。

方法区：存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码数据等。（即永久带），
回收目标主要是常量池的回收和类型的卸载，各线程共享

3.JVM内存为什么要分成新生代，老年代，持久代。新生代中为什么
要分为Eden和Survivor。

思路： 先讲一下JAVA堆，新生代的划分，再谈谈它们之间的转化，相互之间一些参数的配置（如： –
XX:NewRatio，–XX:SurvivorRatio等），再解释为什么要这样划分，最好加一点自己的理解。

我的答案：

1）共享内存区划分

共享内存区 = 持久带 + 堆
持久带 = 方法区 + 其他
Java堆 = 老年代 + 新生代
新生代 = Eden + S0 + S1

2）一些参数的配置

默认的，新生代 (Young) 与老年代 (Old) 的比例的值为 1:2 ，可以通过参数 –XX:NewRatio 配
置。
默认的，Edem : from : to = 8 : 1 : 1 (可以通过参数 –XX:SurvivorRatio 来设定)
Survivor区中的对象被复制次数为15(对应虚拟机参数 -XX:+MaxTenuringThreshold)

3)为什么要分为Eden和Survivor?为什么要设置两个Survivor区？

af://n26
af://n29
af://n39
af://n47

如果没有Survivor，Eden区每进行一次Minor GC，存活的对象就会被送到老年代。老年代很快被
填满，触发Major GC.老年代的内存空间远大于新生代，进行一次Full GC消耗的时间比Minor GC
长得多,所以需要分为Eden和Survivor。
Survivor的存在意义，就是减少被送到老年代的对象，进而减少Full GC的发生，Survivor的预筛选
保证，只有经历16次Minor GC还能在新生代中存活的对象，才会被送到老年代。
设置两个Survivor区最大的好处就是解决了碎片化，刚刚新建的对象在Eden中，经历一次Minor
GC，Eden中的存活对象就会被移动到第一块survivor space S0，Eden被清空；等Eden区再满
了，就再触发一次Minor GC，Eden和S0中的存活对象又会被复制送入第二块survivor space
S1（这个过程非常重要，因为这种复制算法保证了S1中来自S0和Eden两部分的存活对象占用连续
的内存空间，避免了碎片化的发生）

4. JVM中一次完整的GC流程是怎样的，对象如何晋升到老年代

思路： 先描述一下Java堆内存划分，再解释Minor GC，Major GC，full GC，描述它们之间转化流程。

我的答案：

Java堆 = 老年代 + 新生代
新生代 = Eden + S0 + S1
当 Eden 区的空间满了， Java虚拟机会触发一次 Minor GC，以收集新生代的垃圾，存活下来的对
象，则会转移到 Survivor区。
大对象（需要大量连续内存空间的Java对象，如那种很长的字符串）直接进入老年态；
如果对象在Eden出生，并经过第一次Minor GC后仍然存活，并且被Survivor容纳的话，年龄设为
1，每熬过一次Minor GC，年龄+1，若年龄超过一定限制（15），则被晋升到老年态。即长期存
活的对象进入老年态。
老年代满了而无法容纳更多的对象，Minor GC 之后通常就会进行Full GC，Full GC 清理整个内存
堆 – 包括年轻代和年老代。
Major GC 发生在老年代的GC，清理老年区，经常会伴随至少一次Minor GC，比Minor GC慢10
倍以上。

5.你知道哪几种垃圾收集器，各自的优缺点，重点讲下cms和G1，包
括原理，流程，优缺点。

思路： 一定要记住典型的垃圾收集器，尤其cms和G1，它们的原理与区别，涉及的垃圾回收算法。

我的答案：

1）几种垃圾收集器：

Serial收集器： 单线程的收集器，收集垃圾时，必须stop the world，使用复制算法。
ParNew收集器： Serial收集器的多线程版本，也需要stop the world，复制算法。
Parallel Scavenge收集器： 新生代收集器，复制算法的收集器，并发的多线程收集器，目标是达
到一个可控的吞吐量。如果虚拟机总共运行100分钟，其中垃圾花掉1分钟，吞吐量就是99%。
Serial Old收集器： 是Serial收集器的老年代版本，单线程收集器，使用标记整理算法。
Parallel Old收集器： 是Parallel Scavenge收集器的老年代版本，使用多线程，标记-整理算法。
CMS(Concurrent Mark Sweep) 收集器： 是一种以获得最短回收停顿时间为目标的收集器，标
记清除算法，运作过程：初始标记，并发标记，重新标记，并发清除，收集结束会产生大量空间碎
片。
G1收集器： 标记整理算法实现，运作流程主要包括以下：初始标记，并发标记，最终标记，筛选
标记。不会产生空间碎片，可以精确地控制停顿。

2）CMS收集器和G1收集器的区别：

CMS收集器是老年代的收集器，可以配合新生代的Serial和ParNew收集器一起使用；
G1收集器收集范围是老年代和新生代，不需要结合其他收集器使用；

af://n55
af://n73
af://n76
af://n92

CMS收集器以最小的停顿时间为目标的收集器；
G1收集器可预测垃圾回收的停顿时间
CMS收集器是使用“标记-清除”算法进行的垃圾回收，容易产生内存碎片
G1收集器使用的是“标记-整理”算法，进行了空间整合，降低了内存空间碎片。

6.JVM内存模型的相关知识了解多少，比如重排序，内存屏障，
happen-before，主内存，工作内存。

思路： 先画出Java内存模型图，结合例子volatile ，说明什么是重排序，内存屏障，最好能给面试官写
以下demo说明。

我的答案：

1）Java内存模型图：

Java内存模型规定了所有的变量都存储在主内存中，每条线程还有自己的工作内存，线程的工作内存中
保存了该线程中是用到的变量的主内存副本拷贝，线程对变量的所有操作都必须在工作内存中进行，而
不能直接读写主内存。不同的线程之间也无法直接访问对方工作内存中的变量，线程间变量的传递均需
要自己的工作内存和主存之间进行数据同步进行。

2）指令重排序。

在这里，先看一段代码

af://n106
af://n109
af://n112

运行结果可能为(1,0)、(0,1)或(1,1)，也可能是(0,0)。因为，在实际运行时，代码指令可能并不是严格按
照代码语句顺序执行的。大多数现代微处理器都会采用将指令乱序执行（out-of-order execution，简
称OoOE或OOE）的方法，在条件允许的情况下，直接运行当前有能力立即执行的后续指令，避开获取
下一条指令所需数据时造成的等待3。通过乱序执行的技术，处理器可以大大提高执行效率。而这就是
指令重排。

3）内存屏障

内存屏障，也叫内存栅栏，是一种CPU指令，用于控制特定条件下的重排序和内存可见性问题。

LoadLoad屏障：对于这样的语句Load1; LoadLoad; Load2，在Load2及后续读取操作要读取的
数据被访问前，保证Load1要读取的数据被读取完毕。
StoreStore屏障：对于这样的语句Store1; StoreStore; Store2，在Store2及后续写入操作执行
前，保证Store1的写入操作对其它处理器可见。
LoadStore屏障：对于这样的语句Load1; LoadStore; Store2，在Store2及后续写入操作被刷出
前，保证Load1要读取的数据被读取完毕。
StoreLoad屏障：对于这样的语句Store1; StoreLoad; Load2，在Load2及后续所有读取操作执行
前，保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。 在大多数处理器的实
现中，这个屏障是个万能屏障，兼具其它三种内存屏障的功能。

4）happen-before原则

单线程happen-before原则：在同一个线程中，书写在前面的操作happen-before后面的操作。
锁的happen-before原则：同一个锁的unlock操作happen-before此锁的lock操作。
volatile的happen-before原则：对一个volatile变量的写操作happen-before对此变量的任意操
作(当然也包括写操作了)。
happen-before的传递性原则：如果A操作 happen-before B操作，B操作happen-before C操
作，那么A操作happen-before C操作。
线程启动的happen-before原则：同一个线程的start方法happen-before此线程的其它方法。
线程中断的happen-before原则 ：对线程interrupt方法的调用happen-before被中断线程的检测
到中断发送的代码。
线程终结的happen-before原则： 线程中的所有操作都happen-before线程的终止检测。
对象创建的happen-before原则： 一个对象的初始化完成先于他的finalize方法调用。

public class PossibleReordering {

static int x = 0, y = 0;

static int a = 0, b = 0;

public static void main(String[] args) throws InterruptedException {

 Thread one = new Thread(new Runnable() { public void run() { a = 1; x = b; }

});

 Thread other = new Thread(new Runnable() { public void run() { b = 1; y = a; }

}); one.start();other.start(); one.join();other.join(); System.out.println(“(” +

x + “,” + y + “)”);}

af://n116
af://n127

7.简单说说你了解的类加载器，可以打破双亲委派么，怎么打破。

思路： 先说明一下什么是类加载器，可以给面试官画个图，再说一下类加载器存在的意义，说一下双亲
委派模型，最后阐述怎么打破双亲委派模型。

我的答案：

1) 什么是类加载器？

类加载器 就是根据指定全限定名称将class文件加载到JVM内存，转为Class对象。

启动类加载器（Bootstrap ClassLoader）：由C++语言实现（针对HotSpot）,负责将存放在
<JAVA_HOME>\lib目录或-Xbootclasspath参数指定的路径中的类库加载到内存中。
其他类加载器：由Java语言实现，继承自抽象类ClassLoader。如：

扩展类加载器（Extension ClassLoader）：负责加载<JAVA_HOME>\lib\ext目录或
java.ext.dirs系统变量指定的路径中的所有类库。
应用程序类加载器（Application ClassLoader）。负责加载用户类路径（classpath）上
的指定类库，我们可以直接使用这个类加载器。一般情况，如果我们没有自定义类加载
器默认就是用这个加载器。

2）双亲委派模型

双亲委派模型工作过程是：

如果一个类加载器收到类加载的请求，它首先不会自己去尝试加载这个类，而是把这个请求委派
给父类加载器完成。每个类加载器都是如此，只有当父加载器在自己的搜索范围内找不到指定的
类时（即ClassNotFoundException），子加载器才会尝试自己去加载。

双亲委派模型图：

af://n238
af://n146
af://n160

3）为什么需要双亲委派模型？

在这里，先想一下，如果没有双亲委派，那么用户是不是可以自己定义一个java.lang.Object的同名
类，java.lang.String的同名类，并把它放到ClassPath中,那么类之间的比较结果及类的唯一性将无法
保证，因此，为什么需要双亲委派模型？防止内存中出现多份同样的字节码

4）怎么打破双亲委派模型？

打破双亲委派机制则不仅要继承ClassLoader类，还要重写loadClass和findClass方法。

8.说说你知道的几种主要的JVM参数

思路： 可以说一下堆栈配置相关的，垃圾收集器相关的，还有一下辅助信息相关的。

我的答案：

1）堆栈配置相关

-Xmx3550m： 最大堆大小为3550m。

-Xms3550m： 设置初始堆大小为3550m。

-Xmn2g： 设置年轻代大小为2g。

-Xss128k： 每个线程的堆栈大小为128k。

-XX:MaxPermSize： 设置持久代大小为16m

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k

-XX:MaxPermSize=16m -XX:NewRatio=4 -XX:SurvivorRatio=4 -

XX:MaxTenuringThreshold=0

af://n166
af://n168
af://n170
af://n173

-XX:NewRatio=4: 设置年轻代（包括Eden和两个Survivor区）与年老代的比值（除去持久代）。

-XX:SurvivorRatio=4： 设置年轻代中Eden区与Survivor区的大小比值。设置为4，则两个Survivor区
与一个Eden区的比值为2:4，一个Survivor区占整个年轻代的1/6

-XX:MaxTenuringThreshold=0： 设置垃圾最大年龄。如果设置为0的话，则年轻代对象不经过
Survivor区，直接进入年老代。

2）垃圾收集器相关

-XX:+UseParallelGC： 选择垃圾收集器为并行收集器。

-XX:ParallelGCThreads=20： 配置并行收集器的线程数

-XX:+UseConcMarkSweepGC： 设置年老代为并发收集。

-XX:CMSFullGCsBeforeCompaction：由于并发收集器不对内存空间进行压缩、整理，所以运行一段
时间以后会产生“碎片”，使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。

-XX:+UseCMSCompactAtFullCollection： 打开对年老代的压缩。可能会影响性能，但是可以消除碎
片

3）辅助信息相关

-XX:+PrintGC 输出形式:

[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K),
0.0650971 secs]

-XX:+PrintGCDetails 输出形式:

[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633
secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K),
0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs

9.怎么打出线程栈信息。

思路： 可以说一下jps，top ，jstack这几个命令，再配合一次排查线上问题进行解答。

我的答案：

输入jps，获得进程号。
top -Hp pid 获取本进程中所有线程的CPU耗时性能
jstack pid命令查看当前java进程的堆栈状态
或者 jstack -l > /tmp/output.txt 把堆栈信息打到一个txt文件。
可以使用fastthread 堆栈定位，fastthread.io/

-XX:+UseParallelGC

-XX:ParallelGCThreads=20

-XX:+UseConcMarkSweepGC

-XX:CMSFullGCsBeforeCompaction=5

-XX:+UseCMSCompactAtFullCollection：

-XX:+PrintGC

-XX:+PrintGCDetails

af://n183
af://n190
af://n196
http://fastthread.io/

10.强引用、软引用、弱引用、虚引用的区别？

思路： 先说一下四种引用的定义，可以结合代码讲一下，也可以扩展谈到ThreadLocalMap里弱引用用
处。

我的答案：

1）强引用

我们平时new了一个对象就是强引用，例如 Object obj = new Object();即使在内存不足的情况下，JVM
宁愿抛出OutOfMemory错误也不会回收这种对象。

2）软引用

如果一个对象只具有软引用，则内存空间足够，垃圾回收器就不会回收它；如果内存空间不足了，就会
回收这些对象的内存。

用处： 软引用在实际中有重要的应用，例如浏览器的后退按钮。按后退时，这个后退时显示的网页内容
是重新进行请求还是从缓存中取出呢？这就要看具体的实现策略了。

（1）如果一个网页在浏览结束时就进行内容的回收，则按后退查看前面浏览过的页面时，需要重新构
建

（2）如果将浏览过的网页存储到内存中会造成内存的大量浪费，甚至会造成内存溢出

如下代码：

3）弱引用

具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中，一旦
发现了只具有弱引用的对象，不管当前内存空间足够与否，都会回收它的内存。

4）虚引用

SoftReference<String> softRef=new SoftReference<String>(str); // 软引用

Browser prev = new Browser(); // 获取页面进行浏览

SoftReference sr = new SoftReference(prev); // 浏览完毕后置为软引用

if(sr.get()!=null){

rev = (Browser) sr.get(); // 还没有被回收器回收，直接获取

}else{

 prev = new Browser(); // 由于内存吃紧，所以对软引用的对象回收了

 sr = new SoftReference(prev); // 重新构建

}

String str=new String("abc");

WeakReference<String> abcWeakRef = new WeakReference<String>(str);

str=null;

等价于

str = null;

System.gc();

af://n210
af://n213
af://n215
af://n223
af://n226

如果一个对象仅持有虚引用，那么它就和没有任何引用一样，在任何时候都可能被垃圾回收器回收。虚
引用主要用来跟踪对象被垃圾回收器回收的活动。

	1.什么情况下会发生栈内存溢出。
	2.详解JVM内存模型
	3.JVM内存为什么要分成新生代，老年代，持久代。新生代中为什么要分为Eden和Survivor。
	1）共享内存区划分
	2）一些参数的配置
	3)为什么要分为Eden和Survivor?为什么要设置两个Survivor区？

	4. JVM中一次完整的GC流程是怎样的，对象如何晋升到老年代
	5.你知道哪几种垃圾收集器，各自的优缺点，重点讲下cms和G1，包括原理，流程，优缺点。
	1）几种垃圾收集器：
	2）CMS收集器和G1收集器的区别：

	6.JVM内存模型的相关知识了解多少，比如重排序，内存屏障，happen-before，主内存，工作内存。
	1）Java内存模型图：
	2）指令重排序。
	3）内存屏障
	4）happen-before原则

	7.简单说说你了解的类加载器，可以打破双亲委派么，怎么打破。
	1) 什么是类加载器？
	2）双亲委派模型
	3）为什么需要双亲委派模型？
	4）怎么打破双亲委派模型？

	8.说说你知道的几种主要的JVM参数
	1）堆栈配置相关
	2）垃圾收集器相关
	3）辅助信息相关

	9.怎么打出线程栈信息。
	10.强引用、软引用、弱引用、虚引用的区别？
	1）强引用
	2）软引用
	3）弱引用
	4）虚引用

