
深入理解高并发编程
（第1版）

写在前面
在 冰河技术 微信公众号中的【高并发】专题，更新了不少文章，有些读者反馈说，在公众号中刷历史文章不太方便，有时会
忘记自己看到哪一篇了，当打开一篇文章时，似乎之前已经看过了，但就是不知道具体该看哪一篇了。相信很多小伙伴都会有
这样的问题。那怎么办呢？最好的解决方案就是我把这些文章整理成PDF电子书，免费分享给大家，这样，小伙伴们看起来就
方便多了。今天，我就将 冰河技术 微信公众号【高并发】专题中的文章，整理成《深入理解高并发编程（第1版）》 分享给
大家，希望这本电子书能够给大家带来实质性的帮助。后续，我也会持续在 冰河技术 微信公众号中更新【高并发】专题，如
果这本电子书能够给你带来帮助，请关注 冰河技术 微信公众号，我们一起进阶，一起牛逼。

关于作者
大数据架构师，Mykit系列开源框架作者，多年来致力于分布式系统架构、微服务、分布式数据库、分布式事务与大数据技术的研
究，曾主导过众多分布式系统、微服务及大数据项目的架构设计、研发和实施落地。在高并发、高可用、高可扩展性、高可维护性
和大数据等领域拥有丰富的架构经验。对Hadoop，Storm，Spark，Flink等大数据框架源码进行过深度分析，并具有丰富的实战经
验。目前在研究云原生。公众号【冰河技术】作者，《海量数据处理与大数据技术实战》、《MySQL技术大全：开发、优化与运维
实战》作者，基于最终消息可靠性的开源分布式事务框架mykit-transaction-message作者。

源码分析篇

程序员究竟要不要读源码？

很多人觉得读源码比较枯燥，确实，读源码是要比看那些表面教你如何使用的文章要枯燥的多，也比不上刷抖音和微博来的轻松愉
快。但是，读源码是一名程序员突破自我瓶颈，获得高薪和升职加薪的一个有效途径。通过阅读优秀的开源框架的源码，我们能够
领略到框架作者设计框架的思维和思路，从中学习优秀的架构设计和代码设计。这些都是在那些只告诉你如何使用的文章中所学不
到的，就更别提是刷抖音和微博了。

af://n5
af://n9
af://n14
af://n16

af://n24
af://n25
af://n26
af://n28
af://n30
af://n32
af://n34

af://n36
af://n38
af://n39

af://n56

af://n90
af://n91

af://n104
af://n105

af://n116
af://n129

af://n131
af://n132

af://n145

af://n201
af://n202

af://n257

af://n385
af://n388

af://n400

af://n413
af://n415

af://n422

af://n430

af://n438

af://n447

af://n454

af://n470
af://n471
af://n475
af://n477
af://n479
af://n480

af://n485
af://n499
af://n512
af://n514
af://n515

（1）corePoolSize：核心线程数量。

（2）maximumPoolSize：最大线程数。

（3）workQueue：阻塞队列，存储等待执行的任务，很重要，会对线程池运行过程产生重大影响。

其中，上述三个参数的关系如下所示：

如果运行的线程数小于corePoolSize，直接创建新线程处理任务，即使线程池中的其他线程是空闲的。
如果运行的线程数大于等于corePoolSize，并且小于maximumPoolSize，此时，只有当workQueue满时，才会创建新的线程
处理任务。
如果设置的corePoolSize与maximumPoolSize相同，那么创建的线程池大小是固定的，此时，如果有新任务提交，并且
workQueue没有满时，就把请求放入到workQueue中，等待空闲的线程，从workQueue中取出任务进行处理。
如果运行的线程数量大于maximumPoolSize，同时，workQueue已经满了，会通过拒绝策略参数rejectHandler来指定处理策
略。

根据上述三个参数的配置，线程池会对任务进行如下处理方式：

当提交一个新的任务到线程池时，线程池会根据当前线程池中正在运行的线程数量来决定该任务的处理方式。处理方式总共有三
种：直接切换、使用无限队列、使用有界队列。

直接切换常用的队列就是SynchronousQueue。
使用无限队列就是使用基于链表的队列，比如：LinkedBlockingQueue，如果使用这种方式，线程池中创建的最大线程数就是
corePoolSize，此时maximumPoolSize不会起作用。当线程池中所有的核心线程都是运行状态时，提交新任务，就会放入等待
队列中。
使用有界队列使用的是ArrayBlockingQueue，使用这种方式可以将线程池的最大线程数量限制为maximumPoolSize，可以降
低资源的消耗。但是，这种方式使得线程池对线程的调度更困难，因为线程池和队列的容量都是有限的了。

根据上面三个参数，我们可以简单得出如何降低系统资源消耗的一些措施：

如果想降低系统资源的消耗，包括CPU使用率，操作系统资源的消耗，上下文环境切换的开销等，可以设置一个较大的队列容
量和较小的线程池容量。这样，会降低线程处理任务的吞吐量。
如果提交的任务经常发生阻塞，可以考虑调用设置最大线程数的方法，重新设置线程池最大线程数。如果队列的容量设置的较
小，通常需要将线程池的容量设置的大一些，这样，CPU的使用率会高些。如果线程池的容量设置的过大，并发量就会增加，
则需要考虑线程调度的问题，反而可能会降低处理任务的吞吐量。

接下来，我们继续看ThreadPoolExecutor的构造方法的参数。

（4）keepAliveTime：线程没有任务执行时最多保持多久时间终止
当线程池中的线程数量大于corePoolSize时，如果此时没有新的任务提交，核心线程外的线程不会立即销毁，需要等待，直到等待的
时间超过了keepAliveTime就会终止。

（5）unit：keepAliveTime的时间单位

（6）threadFactory：线程工厂，用来创建线程
默认会提供一个默认的工厂来创建线程，当使用默认的工厂来创建线程时，会使新创建的线程具有相同的优先级，并且是非守护的
线程，同时也设置了线程的名称

（7）rejectHandler：拒绝处理任务时的策略

如果workQueue阻塞队列满了，并且没有空闲的线程池，此时，继续提交任务，需要采取一种策略来处理这个任务。

线程池总共提供了四种策略：

直接抛出异常，这也是默认的策略。实现类为AbortPolicy。
用调用者所在的线程来执行任务。实现类为CallerRunsPolicy。
丢弃队列中最靠前的任务并执行当前任务。实现类为DiscardOldestPolicy。
直接丢弃当前任务。实现类为DiscardPolicy。

2.ThreadPoolExecutor提供的启动和停止任务的方法

（1）execute():提交任务，交给线程池执行
（2）submit():提交任务，能够返回执行结果 execute+Future
（3）shutdown():关闭线程池，等待任务都执行完
（4）shutdownNow():立即关闭线程池，不等待任务执行完

3.ThreadPoolExecutor提供的适用于监控的方法

（1）getTaskCount()：线程池已执行和未执行的任务总数
（2）getCompletedTaskCount()：已完成的任务数量
（3）getPoolSize()：线程池当前的线程数量
（4）getCorePoolSize()：线程池核心线程数
（5）getActiveCount():当前线程池中正在执行任务的线程数量

af://n566
af://n568

af://n571
af://n575
af://n589
af://n594

af://n598

af://n635

af://n641
af://n642
af://n644
af://n662

af://n671

af://n692

af://n700
af://n701
af://n703
af://n705

af://n733
af://n736

af://n738

af://n744

af://n763
af://n764
af://n768

af://n785

af://n797

af://n801

af://n818
af://n820

af://n827

af://n848

af://n853
af://n857
af://n862

af://n875

af://n883
af://n888
af://n890

af://n907
af://n918

af://n923
af://n925
af://n926
af://n932
af://n938
af://n944
af://n950

af://n956
af://n963
af://n965
af://n970

af://n977
af://n979

af://n983
af://n988

af://n993
af://n998

af://n1008
af://n1013

af://n1020

af://n1029
af://n1033

af://n1041
af://n1042
af://n1046

af://n1055
af://n1056
af://n1059
af://n1062

af://n1066
af://n1077

af://n1083

af://n1086
af://n1090

af://n1095
af://n1099

af://n1103
af://n1106

af://n1108
af://n1109
af://n1110
af://n1115
af://n1117

af://n1123
af://n1124
af://n1127
af://n1129

af://n1136
af://n1137
af://n1140
af://n1142
af://n1152

af://n1160
af://n1161
af://n1162
af://n1164

af://n1177
af://n1187
af://n1195
af://n1215

af://n1218
af://n1219
af://n1221

af://n1224
af://n1225

af://n1232
af://n1243
af://n1244

af://n1254
af://n1257
af://n1258

af://n1262
af://n1266

af://n1277

af://n1283
af://n1293

af://n1301

af://n1307
af://n1315

af://n1322

af://n1336
af://n1339
af://n1341
af://n1343
af://n1346
af://n1348
af://n1350
af://n1351

小菜心中一阵狂喜！！！

这里，我们思考一个场景：如果在高并发业务场景中，商品被瞬间抢购一空。此时，用户再发起请求时，如果系统由负载均衡层请
求应用层的各个服务，再由应用层的各个服务访问缓存和数据库，其实，本质上已经没有任何意义了，因为商品已经卖完了，再通
过系统的应用层进行层层校验已经没有太多意义了！！而应用层的并发访问量是以百为单位的，这又在一定程度上会降低系统的并
发度。

为了解决这个问题，此时，我们可以在系统的负载均衡层取出用户发送请求时携带的用户id，商品id和活动id等信息，直接通过Lua
脚本等技术来访问缓存中的库存信息。如果商品的库存小于或者等于0，则直接返回用户商品已售完的提示信息，而不用再经过应用
层的层层校验了。

结束语
好了，《深入理解高并发编程（第1版）》到这儿就结束了，希望这本电子书能够给你带来实质性的帮助，我会持续更新【冰河技
术】微信公众号的【高并发】专题文章。小伙伴们可以关注【冰河技术】微信公众号，第一时间阅读超硬核技术干货，我们一起进
阶，一起牛逼！！

重磅福利
微信搜一搜【冰河技术】微信公众号，关注这个有深度的程序员，每天阅读超硬核技术干货，公众号内回复【PDF】有我准备的一线
大厂面试资料和我原创的超硬核PDF技术文档，以及我为大家精心准备的多套简历模板（不断更新中），希望大家都能找到心仪的工
作，学习是一条时而郁郁寡欢，时而开怀大笑的路，加油。如果你通过努力成功进入到了心仪的公司，一定不要懈怠放松，职场成
长和新技术学习一样，不进则退。如果有幸我们江湖再见！

另外，我开源的各个PDF，后续我都会持续更新和维护，感谢大家长期以来对冰河的支持！！

写在最后
如果你觉得冰河写的还不错，请微信搜索并关注「 冰河技术 」微信公众号，跟冰河学习高并发、分布式、微服务、大数据、
互联网和云原生技术，「 冰河技术 」微信公众号更新了大量技术专题，每一篇技术文章干货满满！不少读者已经通过阅读「
冰河技术 」微信公众号文章，吊打面试官，成功跳槽到大厂；也有不少读者实现了技术上的飞跃，成为公司的技术骨干！如果
你也想像他们一样提升自己的能力，实现技术能力的飞跃，进大厂，升职加薪，那就关注「 冰河技术 」微信公众号吧，每天
更新超硬核技术干货，让你对如何提升技术能力不再迷茫！

af://n4472
af://n4474
af://n4477

	写在前面
	关于作者
	源码分析篇
	程序员究竟要不要读源码？

	基础案例篇

