
前置启动程序
事先启动一个web应用程序，用jps查看其进程id，接着用各种jdk自带命令优化应用

Jmap
此命令可以用来查看内存信息，实例个数以及占用内存大小

1 jmap ‐histo 14660 #查看历史生成的实例

2 jmap ‐histo:live 14660 #查看当前存活的实例，执行过程中可能会触发一次full gc

打开log.txt，文件内容如下：

num：序号

instances：实例数量

bytes：占用空间大小

class name：类名称，[C is a char[]，[S is a short[]，[I is a int[]，[B is a byte[]，[[I is a int[][]

堆信息

堆内存dump
1 jmap ‐dump:format=b,file=eureka.hprof 14660

也可以设置内存溢出自动导出dump文件(内存很大的时候，可能会导不出来)

1. -XX:+HeapDumpOnOutOfMemoryError

2. -XX:HeapDumpPath=./ （路径）

示例代码：
1 public class OOMTest {

2

3 public static List<Object> list = new ArrayList<>();

4

5 // JVM设置

6 // ‐Xms10M ‐Xmx10M ‐XX:+PrintGCDetails ‐XX:+HeapDumpOnOutOfMemoryError ‐XX:HeapDumpPath=D:\jvm.dump

7 public static void main(String[] args) {

8 List<Object> list = new ArrayList<>();

9 int i = 0;

10 int j = 0;

11 while (true) {

12 list.add(new User(i++, UUID.randomUUID().toString()));

13 new User(j‐‐, UUID.randomUUID().toString());

14 }

15 }

16 }

可以用jvisualvm命令工具导入该dump文件分析

Jstack
用jstack加进程id查找死锁，见如下示例

1 public class DeadLockTest {

2

3 private static Object lock1 = new Object();

4 private static Object lock2 = new Object();

5

6 public static void main(String[] args) {

7 new Thread(() ‐> {

8 synchronized (lock1) {

9 try {

10 System.out.println("thread1 begin");

11 Thread.sleep(5000);

12 } catch (InterruptedException e) {

13 }

14 synchronized (lock2) {

15 System.out.println("thread1 end");

16 }

17 }

18 }).start();

19

20 new Thread(() ‐> {

21 synchronized (lock2) {

22 try {

23 System.out.println("thread2 begin");

24 Thread.sleep(5000);

25 } catch (InterruptedException e) {

26 }

27 synchronized (lock1) {

28 System.out.println("thread2 end");

29 }

30 }

31 }).start();

32

33 System.out.println("main thread end");

34 }

35 }

"Thread-1" 线程名

prio=5 优先级=5

tid=0x000000001fa9e000 线程id

nid=0x2d64 线程对应的本地线程标识nid

java.lang.Thread.State: BLOCKED 线程状态

还可以用jvisualvm自动检测死锁

 远程连接jvisualvm
启动普通的jar程序JMX端口配置：

1 java ‐Dcom.sun.management.jmxremote.port=8888 ‐Djava.rmi.server.hostname=192.168.65.60 ‐Dcom.sun.management.jmxremot
e.ssl=false ‐Dcom.sun.management.jmxremote.authenticate=false ‐jar microservice‐eureka‐server.jar

PS：

-Dcom.sun.management.jmxremote.port 为远程机器的JMX端口

-Djava.rmi.server.hostname 为远程机器IP

tomcat的JMX配置：在catalina.sh文件里的最后一个JAVA_OPTS的赋值语句下一行增加如下配置行
1 JAVA_OPTS="$JAVA_OPTS ‐Dcom.sun.management.jmxremote.port=8888 ‐Djava.rmi.server.hostname=192.168.50.60 ‐Dcom.sun.ma
nagement.jmxremote.ssl=false ‐Dcom.sun.management.jmxremote.authenticate=false"

连接时确认下端口是否通畅，可以临时关闭下防火墙
1 systemctl stop firewalld #临时关闭防火墙

jstack找出占用cpu最高的线程堆栈信息
1 package com.tuling.jvm;

2

3 /**

4 * 运行此代码，cpu会飙高

5 */

6 public class Math {

7

8 public static final int initData = 666;

9 public static User user = new User();

10

11 public int compute() { //一个方法对应一块栈帧内存区域

12 int a = 1;

13 int b = 2;

14 int c = (a + b) * 10;

15 return c;

16 }

17

18 public static void main(String[] args) {

19 Math math = new Math();

20 while (true){

21 math.compute();

22 }

23 }

24 }

1，使用命令top -p <pid> ，显示你的java进程的内存情况，pid是你的java进程号，比如19663

2，按H，获取每个线程的内存情况

3，找到内存和cpu占用最高的线程tid，比如19664

4，转为十六进制得到 0x4cd0，此为线程id的十六进制表示

5，执行 jstack 19663|grep -A 10 4cd0，得到线程堆栈信息中 4cd0 这个线程所在行的后面10行，从堆栈中可以发现导致cpu飙高的调

用方法

6，查看对应的堆栈信息找出可能存在问题的代码

Jinfo
查看正在运行的Java应用程序的扩展参数

查看jvm的参数

查看java系统参数

Jstat
jstat命令可以查看堆内存各部分的使用量，以及加载类的数量。命令的格式如下：

jstat [-命令选项] [vmid] [间隔时间(毫秒)] [查询次数]

注意：使用的jdk版本是jdk8

垃圾回收统计
jstat -gc pid 最常用，可以评估程序内存使用及GC压力整体情况

S0C：第一个幸存区的大小，单位KB

S1C：第二个幸存区的大小

S0U：第一个幸存区的使用大小

S1U：第二个幸存区的使用大小

EC：伊甸园区的大小

EU：伊甸园区的使用大小

OC：老年代大小

OU：老年代使用大小

MC：方法区大小(元空间)

MU：方法区使用大小

CCSC:压缩类空间大小

CCSU:压缩类空间使用大小

YGC：年轻代垃圾回收次数

YGCT：年轻代垃圾回收消耗时间，单位s

FGC：老年代垃圾回收次数

FGCT：老年代垃圾回收消耗时间，单位s

GCT：垃圾回收消耗总时间，单位s

堆内存统计

NGCMN：新生代最小容量

NGCMX：新生代最大容量

NGC：当前新生代容量

S0C：第一个幸存区大小

S1C：第二个幸存区的大小

EC：伊甸园区的大小

OGCMN：老年代最小容量

OGCMX：老年代最大容量

OGC：当前老年代大小

OC:当前老年代大小

MCMN:最小元数据容量

MCMX：最大元数据容量

MC：当前元数据空间大小

CCSMN：最小压缩类空间大小

CCSMX：最大压缩类空间大小

CCSC：当前压缩类空间大小

YGC：年轻代gc次数

FGC：老年代GC次数

新生代垃圾回收统计

S0C：第一个幸存区的大小

S1C：第二个幸存区的大小

S0U：第一个幸存区的使用大小

S1U：第二个幸存区的使用大小

TT:对象在新生代存活的次数

MTT:对象在新生代存活的最大次数

DSS:期望的幸存区大小

EC：伊甸园区的大小

EU：伊甸园区的使用大小

YGC：年轻代垃圾回收次数

YGCT：年轻代垃圾回收消耗时间

新生代内存统计

NGCMN：新生代最小容量

NGCMX：新生代最大容量

NGC：当前新生代容量

S0CMX：最大幸存1区大小

S0C：当前幸存1区大小

S1CMX：最大幸存2区大小

S1C：当前幸存2区大小

ECMX：最大伊甸园区大小

EC：当前伊甸园区大小

YGC：年轻代垃圾回收次数

FGC：老年代回收次数

老年代垃圾回收统计

MC：方法区大小

MU：方法区使用大小

CCSC:压缩类空间大小

CCSU:压缩类空间使用大小

OC：老年代大小

OU：老年代使用大小

YGC：年轻代垃圾回收次数

FGC：老年代垃圾回收次数

FGCT：老年代垃圾回收消耗时间

GCT：垃圾回收消耗总时间

老年代内存统计

OGCMN：老年代最小容量

OGCMX：老年代最大容量

OGC：当前老年代大小

OC：老年代大小

YGC：年轻代垃圾回收次数

FGC：老年代垃圾回收次数

FGCT：老年代垃圾回收消耗时间

GCT：垃圾回收消耗总时间

元数据空间统计

MCMN:最小元数据容量

MCMX：最大元数据容量

MC：当前元数据空间大小

CCSMN：最小压缩类空间大小

CCSMX：最大压缩类空间大小

CCSC：当前压缩类空间大小

YGC：年轻代垃圾回收次数

FGC：老年代垃圾回收次数

FGCT：老年代垃圾回收消耗时间

GCT：垃圾回收消耗总时间

S0：幸存1区当前使用比例

S1：幸存2区当前使用比例

E：伊甸园区使用比例

O：老年代使用比例

M：元数据区使用比例

CCS：压缩使用比例

YGC：年轻代垃圾回收次数

FGC：老年代垃圾回收次数

FGCT：老年代垃圾回收消耗时间

GCT：垃圾回收消耗总时间

JVM运行情况预估
用 jstat gc -pid 命令可以计算出如下一些关键数据，有了这些数据就可以采用之前介绍过的优化思路，先给自己的系统设置一些初始性的

JVM参数，比如堆内存大小，年轻代大小，Eden和Survivor的比例，老年代的大小，大对象的阈值，大龄对象进入老年代的阈值等。

年轻代对象增长的速率

可以执行命令 jstat -gc pid 1000 10 (每隔1秒执行1次命令，共执行10次)，通过观察EU(eden区的使用)来估算每秒eden大概新增多少对

象，如果系统负载不高，可以把频率1秒换成1分钟，甚至10分钟来观察整体情况。注意，一般系统可能有高峰期和日常期，所以需要在不

同的时间分别估算不同情况下对象增长速率。

Young GC的触发频率和每次耗时

知道年轻代对象增长速率我们就能推根据eden区的大小推算出Young GC大概多久触发一次，Young GC的平均耗时可以通过 YGCT/YGC

公式算出，根据结果我们大概就能知道系统大概多久会因为Young GC的执行而卡顿多久。

每次Young GC后有多少对象存活和进入老年代

这个因为之前已经大概知道Young GC的频率，假设是每5分钟一次，那么可以执行命令 jstat -gc pid 300000 10 ，观察每次结果eden，

survivor和老年代使用的变化情况，在每次gc后eden区使用一般会大幅减少，survivor和老年代都有可能增长，这些增长的对象就是每次

Young GC后存活的对象，同时还可以看出每次Young GC后进去老年代大概多少对象，从而可以推算出老年代对象增长速率。

Full GC的触发频率和每次耗时

知道了老年代对象的增长速率就可以推算出Full GC的触发频率了，Full GC的每次耗时可以用公式 FGCT/FGC 计算得出。

优化思路其实简单来说就是尽量让每次Young GC后的存活对象小于Survivor区域的50%，都留存在年轻代里。尽量别让对象进入老年

代。尽量减少Full GC的频率，避免频繁Full GC对JVM性能的影响。

阿里巴巴Arthas详解

Arthas 是 Alibaba 在 2018 年 9 月开源的 Java 诊断工具。支持 JDK6+， 采用命令行交互模式，可以方便的定位和诊断

线上程序运行问题。Arthas 官方文档十分详细，详见：https://alibaba.github.io/arthas

 Arthas使用场景

得益于 Arthas 强大且丰富的功能，让 Arthas 能做的事情超乎想象。下面仅仅列举几项常见的使用情况，更多的使用场

景可以在熟悉了 Arthas 之后自行探索。

1. 是否有一个全局视角来查看系统的运行状况？

2. 为什么 CPU 又升高了，到底是哪里占用了 CPU ？

3. 运行的多线程有死锁吗？有阻塞吗？

4. 程序运行耗时很长，是哪里耗时比较长呢？如何监测呢？

5. 这个类从哪个 jar 包加载的？为什么会报各种类相关的 Exception？

6. 我改的代码为什么没有执行到？难道是我没 commit？分支搞错了？

7. 遇到问题无法在线上 debug，难道只能通过加日志再重新发布吗？

8. 有什么办法可以监控到 JVM 的实时运行状态？

 Arthas使用
1 # github下载arthas

2 wget https://alibaba.github.io/arthas/arthas‐boot.jar

3 # 或者 Gitee 下载

4 wget https://arthas.gitee.io/arthas‐boot.jar

用java -jar运行即可，可以识别机器上所有Java进程(我们这里之前已经运行了一个Arthas测试程序，代码见下方)

1 package com.tuling.jvm;

2

3 import java.util.HashSet;

4

5 public class Arthas {

6

7 private static HashSet hashSet = new HashSet();

8

9 public static void main(String[] args) {

10 // 模拟 CPU 过高

11 cpuHigh();

12 // 模拟线程死锁

13 deadThread();

14 // 不断的向 hashSet 集合增加数据

15 addHashSetThread();

16 }

17

18 /**

19 * 不断的向 hashSet 集合添加数据

20 */

21 public static void addHashSetThread() {

22 // 初始化常量

23 new Thread(() ‐> {

24 int count = 0;

25 while (true) {

26 try {

27 hashSet.add("count" + count);

28 Thread.sleep(1000);

29 count++;

30 } catch (InterruptedException e) {

31 e.printStackTrace();

https://alibaba.github.io/arthas

32 }

33 }

34 }).start();

35 }

36

37 public static void cpuHigh() {

38 new Thread(() ‐> {

39 while (true) {

40

41 }

42 }).start();

43 }

44

45 /**

46 * 死锁

47 */

48 private static void deadThread() {

49 /** 创建资源 */

50 Object resourceA = new Object();

51 Object resourceB = new Object();

52 // 创建线程

53 Thread threadA = new Thread(() ‐> {

54 synchronized (resourceA) {

55 System.out.println(Thread.currentThread() + " get ResourceA");

56 try {

57 Thread.sleep(1000);

58 } catch (InterruptedException e) {

59 e.printStackTrace();

60 }

61 System.out.println(Thread.currentThread() + "waiting get resourceB");

62 synchronized (resourceB) {

63 System.out.println(Thread.currentThread() + " get resourceB");

64 }

65 }

66 });

67

68 Thread threadB = new Thread(() ‐> {

69 synchronized (resourceB) {

70 System.out.println(Thread.currentThread() + " get ResourceB");

71 try {

72 Thread.sleep(1000);

73 } catch (InterruptedException e) {

74 e.printStackTrace();

75 }

76 System.out.println(Thread.currentThread() + "waiting get resourceA");

77 synchronized (resourceA) {

78 System.out.println(Thread.currentThread() + " get resourceA");

79 }

80 }

81 });

82 threadA.start();

83 threadB.start();

84 }

85 }

选择进程序号1，进入进程信息操作

输入dashboard可以查看整个进程的运行情况，线程、内存、GC、运行环境信息：

输入thread可以查看线程详细情况

输入 thread加上线程ID 可以查看线程堆栈

输入 thread -b 可以查看线程死锁

输入 jad加类的全名 可以反编译，这样可以方便我们查看线上代码是否是正确的版本

使用 ognl 命令可以查看线上系统变量的值，甚至可以修改变量的值

更多命令使用可以用help命令查看，或查看文档：https://alibaba.github.io/arthas/commands.html#arthas

GC日志详解

对于java应用我们可以通过一些配置把程序运行过程中的gc日志全部打印出来，然后分析gc日志得到关键性指标，分析

GC原因，调优JVM参数。

打印GC日志方法，在JVM参数里增加参数，%t 代表时间

1 ‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause

2 ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M

Tomcat则直接加在JAVA_OPTS变量里。

如何分析GC日志

运行程序加上对应gc日志
1 java ‐jar ‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause

https://alibaba.github.io/arthas/commands.html#arthas

2 ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M microservice‐eureka‐server.jar

下图中是我截取的JVM刚启动的一部分GC日志

我们可以看到图中第一行红框，是项目的配置参数。这里不仅配置了打印GC日志，还有相关的VM内存参数。

第二行红框中的是在这个GC时间点发生GC之后相关GC情况。

1、对于2.909： 这是从jvm启动开始计算到这次GC经过的时间，前面还有具体的发生时间日期。

2、Full GC(Metadata GC Threshold)指这是一次full gc，括号里是gc的原因， PSYoungGen是年轻代的GC，

ParOldGen是老年代的GC，Metaspace是元空间的GC

3、 6160K->0K(141824K)，这三个数字分别对应GC之前占用年轻代的大小，GC之后年轻代占用，以及整个年轻代的大

小。

4、112K->6056K(95744K)，这三个数字分别对应GC之前占用老年代的大小，GC之后老年代占用，以及整个老年代的

大小。

5、6272K->6056K(237568K)，这三个数字分别对应GC之前占用堆内存的大小，GC之后堆内存占用，以及整个堆内存

的大小。

6、20516K->20516K(1069056K)，这三个数字分别对应GC之前占用元空间内存的大小，GC之后元空间内存占用，以

及整个元空间内存的大小。

7、0.0209707是该时间点GC总耗费时间。

从日志可以发现几次fullgc都是由于元空间不够导致的，所以我们可以将元空间调大点
1 java ‐jar ‐Xloggc:./gc‐adjust‐%t.log ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+Print
GCDateStamps

2 ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M

3 microservice‐eureka‐server.jar

调整完我们再看下gc日志发现已经没有因为元空间不够导致的fullgc了

对于CMS和G1收集器的日志会有一点不一样，也可以试着打印下对应的gc日志分析下，可以发现gc日志里面的gc步骤跟

我们之前讲过的步骤是类似的
1 public class HeapTest {

2

3 byte[] a = new byte[1024 * 100]; //100KB

4

5 public static void main(String[] args) throws InterruptedException {

6 ArrayList<HeapTest> heapTests = new ArrayList<>();

7 while (true) {

8 heapTests.add(new HeapTest());

9 Thread.sleep(10);

10 }

11 }

12 }

CMS
1 ‐Xloggc:d:/gc‐cms‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+P
rintGCDateStamps

2 ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M

3 ‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC

G1
1 ‐Xloggc:d:/gc‐g1‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+Pr
intGCDateStamps

2 ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M
‐XX:+UseG1GC

上面的这些参数，能够帮我们查看分析GC的垃圾收集情况。但是如果GC日志很多很多，成千上万行。就算你一目十行，

看完了，脑子也是一片空白。所以我们可以借助一些功能来帮助我们分析，这里推荐一个gceasy(https://gceasy.io)，可以

上传gc文件，然后他会利用可视化的界面来展现GC情况。具体下图所示

上图我们可以看到年轻代，老年代，以及永久代的内存分配，和最大使用情况。

上图我们可以看到堆内存在GC之前和之后的变化，以及其他信息。

这个工具还提供基于机器学习的JVM智能优化建议，当然现在这个功能需要付费

https://gceasy.io/

JVM参数汇总查看命令

java -XX:+PrintFlagsInitial 表示打印出所有参数选项的默认值

java -XX:+PrintFlagsFinal 表示打印出所有参数选项在运行程序时生效的值

